Exponential Map of a Lie Group

The map _G:g G sending X to the time-1 value of the unique one-parameter subgroup with velocity X at the identity.
Exponential Map of a Lie Group

Let GG be a with identity element ee, and let g=TeG\mathfrak g=T_eG be its .

Definition (Lie group exponential).
For each XgX\in \mathfrak g, there exists a unique smooth group homomorphism

γX:(R,+)G \gamma_X:(\mathbb R,+)\longrightarrow G

such that γX(0)=e\gamma_X(0)=e and γX(0)=X\gamma_X'(0)=X (viewing XX as a tangent vector in TeGT_eG). The exponential map of GG is the smooth map

expG:gG,expG(X)=γX(1). \exp_G:\mathfrak g\longrightarrow G,\qquad \exp_G(X)=\gamma_X(1).

Equivalently, γX(t)=expG(tX)\gamma_X(t)=\exp_G(tX) is the integral curve through ee of the determined by XX, defined using .

Basic properties.

  • expG(0)=e\exp_G(0)=e and (dexpG)0=idg(d\exp_G)_0=\mathrm{id}_{\mathfrak g}.
  • The curve texpG(tX)t\mapsto \exp_G(tX) is a one-parameter subgroup: expG((s+t)X)=expG(sX)expG(tX)\exp_G((s+t)X)=\exp_G(sX)\exp_G(tX).
  • If X,YgX,Y\in\mathfrak g commute (i.e. [X,Y]=0[X,Y]=0 for the ), then expG(X+Y)=expG(X)expG(Y)\exp_G(X+Y)=\exp_G(X)\exp_G(Y).
  • If φ:GH\varphi:G\to H is a , then φ\varphi intertwines exponentials via the induced : φ(expG(X))=expH(dφe(X)). \varphi(\exp_G(X))=\exp_H(d\varphi_e(X)).

Examples

  1. Additive group (Rn,+)(\mathbb R^n,+).
    Here G=RnG=\mathbb R^n is a Lie group under addition, gRn\mathfrak g\cong \mathbb R^n, and the one-parameter subgroup with velocity XX is γX(t)=tX\gamma_X(t)=tX. Thus expG(X)=X\exp_G(X)=X (the identity map).

  2. Circle group S1CS^1\subset \mathbb C.
    With multiplication in C\mathbb C, G=S1G=S^1 has Lie algebra g=T1S1=iR\mathfrak g=T_1S^1=i\mathbb R. The exponential map is the usual complex exponential restricted to iRi\mathbb R:

    expS1(iθ)=eiθ. \exp_{S^1}(i\theta)=e^{i\theta}.
  3. Matrix Lie groups.
    If GGL(n,R)G\subseteq GL(n,\mathbb R) is a matrix Lie group, then gMn(R)\mathfrak g\subseteq M_n(\mathbb R), and expG\exp_G is given by the matrix exponential:

    expG(A)=k=0Akk!. \exp_G(A)=\sum_{k=0}^{\infty}\frac{A^k}{k!}.

    For example, in SO(2)SO(2) this recovers rotations, and in GL(n,R)GL(n,\mathbb R) it produces invertible matrices for all AA.