Differential of a Lie Group Homomorphism

The induced linear map on Lie algebras d_e:g associated to a Lie group homomorphism :G H.
Differential of a Lie Group Homomorphism

Let GG and HH be with identity elements eGe_G and eHe_H, and let φ:GH\varphi:G\to H be a . Since φ\varphi is a , it has a at every point; in particular at the identity:

dφeG:TeGGTeHH. d\varphi_{e_G}:T_{e_G}G\longrightarrow T_{e_H}H.

Using the standard identification of the of a Lie group with the tangent space at the identity, we view this as a linear map

dφeG:gh. d\varphi_{e_G}:\mathfrak g\to\mathfrak h.

Theorem (Lie algebra homomorphism induced by φ\varphi).
Let φ:GH\varphi:G\to H be a Lie group homomorphism. Then the differential at the identity dφeG:ghd\varphi_{e_G}:\mathfrak g\to\mathfrak h is a homomorphism of Lie algebras, meaning it preserves the :

dφeG([X,Y])=[dφeG(X),dφeG(Y)]for all X,Yg. d\varphi_{e_G}([X,Y])=[d\varphi_{e_G}(X),\,d\varphi_{e_G}(Y)] \quad \text{for all } X,Y\in\mathfrak g.

Moreover, it intertwines the :

φ(expG(X))=expH(dφeG(X))for all Xg. \varphi(\exp_G(X))=\exp_H(d\varphi_{e_G}(X)) \quad \text{for all } X\in\mathfrak g.

It is also functorial: if ψ:HK\psi:H\to K is another Lie group homomorphism, then

d(ψφ)eG=dψeHdφeG. d(\psi\circ\varphi)_{e_G}=d\psi_{e_H}\circ d\varphi_{e_G}.

Examples

  1. Inclusion of a Lie subgroup.
    If i:HGi:H\hookrightarrow G is the inclusion of a , then dieH:hgdi_{e_H}:\mathfrak h\to\mathfrak g is the natural inclusion of tangent spaces at the identity. Concretely, it identifies h\mathfrak h as a Lie subalgebra of g\mathfrak g.

  2. Determinant on GL(n,R)GL(n,\mathbb R).
    The determinant is a Lie group homomorphism det:GL(n,R)R×\det:GL(n,\mathbb R)\to \mathbb R^\times. Identifying gl(n,R)Mn(R)\mathfrak{gl}(n,\mathbb R)\cong M_n(\mathbb R), the induced map on Lie algebras is

    d(det)I(A)=tr(A), d(\det)_{I}(A)=\operatorname{tr}(A),

    and more generally d(det)B(V)=det(B)tr(B1V)d(\det)_B(V)=\det(B)\operatorname{tr}(B^{-1}V).

  3. Covering map RS1\mathbb R\to S^1.
    The map φ:RS1C\varphi:\mathbb R\to S^1\subset\mathbb C, φ(t)=eit\varphi(t)=e^{it}, is a Lie group homomorphism (additive to multiplicative). Then dφ0:RT1S1d\varphi_0:\mathbb R\to T_1S^1 sends aiaa\mapsto ia (since ddteitt=0=i\frac{d}{dt}e^{it}\big|_{t=0}=i). Under the common identification T1S1RT_1S^1\cong \mathbb R via aiaa\mapsto ia, this differential is the identity.