Differential of a Lie group homomorphism

The induced Lie algebra homomorphism obtained by differentiating a Lie group homomorphism at the identity.
Differential of a Lie group homomorphism

Let Φ:GH\Phi:G\to H be a homomorphism of Lie groups. Since Φ\Phi is a smooth map, it has a at each point; in particular, at the identity element eGGe_G\in G one gets a linear map

dΦeG:TeGGTeHH. \mathrm{d}\Phi_{e_G}:T_{e_G}G\longrightarrow T_{e_H}H.

Using the identification of these tangent spaces with the g\mathfrak{g} and h\mathfrak{h}, the map

ϕ:=dΦeG:gh \phi := \mathrm{d}\Phi_{e_G}:\mathfrak{g}\to\mathfrak{h}

is called the differential of the Lie group homomorphism.

A fundamental property is that ϕ\phi respects brackets:

ϕ([X,Y])=[ϕ(X),ϕ(Y)]for all X,Yg, \phi([X,Y])=[\phi(X),\phi(Y)] \quad \text{for all } X,Y\in\mathfrak{g},

so ϕ\phi is a Lie algebra homomorphism (the bracket on each side is the one induced from the Lie group structure). This construction is functorial: if Ψ:HK\Psi:H\to K is another Lie group homomorphism, then d(ΨΦ)eG=dΨeHdΦeG\mathrm{d}(\Psi\circ\Phi)_{e_G}=\mathrm{d}\Psi_{e_H}\circ \mathrm{d}\Phi_{e_G}.

Examples

  1. Inclusion of a Lie subgroup. The inclusion ι:SO(n)GL(n,R)\iota:\mathrm{SO}(n)\hookrightarrow \mathrm{GL}(n,\mathbb{R}) differentiates to the inclusion so(n)gl(n,R)\mathfrak{so}(n)\hookrightarrow \mathfrak{gl}(n,\mathbb{R}).
  2. Determinant. The map det:GL(n,R)R×\det:\mathrm{GL}(n,\mathbb{R})\to \mathbb{R}^\times is a Lie group homomorphism. Identifying Lie(R×)R\mathrm{Lie}(\mathbb{R}^\times)\cong\mathbb{R}, its differential at the identity sends a matrix AA to tr(A)\mathrm{tr}(A).
  3. Adjoint action. The Ad:GGL(g)\mathrm{Ad}:G\to \mathrm{GL}(\mathfrak{g}) is a Lie group homomorphism; differentiating it at the identity yields the adjoint Lie algebra representation ad:gEnd(g)\mathrm{ad}:\mathfrak{g}\to \mathrm{End}(\mathfrak{g}).