Construction: Splitting of the Atiyah sequence from a principal connection

How a principal connection produces a canonical splitting of the Atiyah sequence of a principal bundle.
Construction: Splitting of the Atiyah sequence from a principal connection

Let π:PM\pi:P\to M be a over a MM, where GG is a with g\mathfrak g.

Write TPTP for the of PP. The right action of GG on PP induces a right action on TPTP, and the quotient bundle

At(P)  :=  TP/G    M \mathrm{At}(P)\;:=\;TP/G \;\longrightarrow\; M

is the Atiyah algebroid of PP. The differential dπ:TPTMd\pi:TP\to TM is GG-equivariant, hence descends to a vector-bundle map (the anchor)

a:At(P)TM. a:\mathrm{At}(P)\longrightarrow TM.

The vertical subbundle ker(dπ)TP\ker(d\pi)\subset TP identifies (via fundamental vector fields) with P×gP\times\mathfrak g, and after dividing by GG one obtains the adjoint bundle

ad(P):=P×Adg, \operatorname{ad}(P):=P\times_{\mathrm{Ad}}\mathfrak g,

together with an injective bundle map ad(P)At(P)\operatorname{ad}(P)\hookrightarrow \mathrm{At}(P). This yields the Atiyah short exact sequence

0ad(P)At(P)aTM0. 0\longrightarrow \operatorname{ad}(P)\longrightarrow \mathrm{At}(P)\xrightarrow{\,a\,} TM\longrightarrow 0.

Construction (splitting from a connection)

Let ω\omega be a on PP, and let H:=ker(ω)TPH:=\ker(\omega)\subset TP be its horizontal distribution. Define a bundle map

sω:TMAt(P) s_\omega:TM\longrightarrow \mathrm{At}(P)

as follows. For xMx\in M and vxTxMv_x\in T_xM, choose any pPx:=π1(x)p\in P_x:=\pi^{-1}(x). There is a unique horizontal vector v~pHp\widetilde v_p\in H_p with dπ(v~p)=vxd\pi(\widetilde v_p)=v_x. Set

sω(vx)  :=  [v~p](TP/G)x. s_\omega(v_x)\;:=\;[\widetilde v_p]\in (TP/G)_x.

Well-definedness. If p=pgp' = p\cdot g, then horizontality is preserved by right translation and v~p=(Rg)v~p\widetilde v_{p'} = (R_g)_*\widetilde v_p, so [v~p]=[v~p][\widetilde v_{p'}]=[\widetilde v_p] in TP/GTP/G. Hence sωs_\omega is independent of the chosen point in the fiber.

Splitting property. By construction, asω=idTMa\circ s_\omega=\mathrm{id}_{TM}, so sωs_\omega is a (right) splitting of the Atiyah sequence.

This construction is inverse to the correspondence in .

Examples

  1. Trivial bundle. If P=M×GP=M\times G, then At(P)TM(M×g)\mathrm{At}(P)\cong TM\oplus(M\times\mathfrak g). A connection is determined by a g\mathfrak g-valued 11-form AA on MM, and the splitting is

    sω(vx)=(vx,Ax(vx)). s_\omega(v_x)=(v_x,\,-A_x(v_x)).
  2. Frame bundle. If EME\to M is a rank-nn vector bundle and P=Fr(E)P=\mathrm{Fr}(E) is its , then a on EE induces a principal connection on PP, hence a splitting TMTFr(E)/GL(n)TM\to T\mathrm{Fr}(E)/\mathrm{GL}(n) as above.

  3. Hopf fibration. For the Hopf bundle S3S2S^3\to S^2 (a principal U(1)U(1)-bundle), the standard connection takes horizontals to be orthogonal complements of the fiber circles. The resulting sωs_\omega identifies each tangent vector on S2S^2 with the corresponding U(1)U(1)-equivalence class of its horizontal lift in TS3TS^3.