Construction: Frame bundle Fr(E) of a vector bundle E

Define the principal GL(n)-bundle of frames of a rank-n vector bundle.
Construction: Frame bundle Fr(E) of a vector bundle E

Let π:EM\pi:E\to M be a smooth real vector bundle of rank nn over a MM.

Construction (frame bundle)

The frame bundle of EE is

Fr(E):=xMIso(Rn,Ex), \mathrm{Fr}(E):=\bigsqcup_{x\in M}\mathrm{Iso}(\mathbb R^n,E_x),

the set of linear isomorphisms u:RnExu:\mathbb R^n\to E_x for varying xx. An element of Fr(E)\mathrm{Fr}(E) is called a frame (or ordered basis) of the fiber ExE_x.

There is a smooth projection Fr(E)M\mathrm{Fr}(E)\to M sending uu to its basepoint xx. The general linear group GL(n,R)\mathrm{GL}(n,\mathbb R) acts on the right by

uA:=uA,AGL(n,R), u\cdot A := u\circ A,\qquad A\in \mathrm{GL}(n,\mathbb R),

making Fr(E)M\mathrm{Fr}(E)\to M into a with G=GL(n,R)G=\mathrm{GL}(n,\mathbb R).

Local trivializations of EE give local trivializations of Fr(E)\mathrm{Fr}(E): if EUU×RnE|_{U}\cong U\times\mathbb R^n, then

Fr(E)UU×GL(n,R). \mathrm{Fr}(E)|_U \cong U\times \mathrm{GL}(n,\mathbb R).

Examples

  1. Tangent bundle. For E=TME=TM, the of MM, Fr(TM)\mathrm{Fr}(TM) is the usual frame bundle of the manifold.

  2. Trivial bundle. If EM×RnE\cong M\times\mathbb R^n, then Fr(E)M×GL(n,R)\mathrm{Fr}(E)\cong M\times \mathrm{GL}(n,\mathbb R) as principal bundles.

  3. Oriented frames. If EE is oriented, the subspace of positively oriented frames forms a principal GL+(n,R)\mathrm{GL}^+(n,\mathbb R)-subbundle of Fr(E)\mathrm{Fr}(E).