Coadjoint action of a Lie group

The induced action of a Lie group on the dual of its Lie algebra obtained by dualizing the adjoint action.
Coadjoint action of a Lie group

Let GG be a Lie group with Lie algebra g\mathfrak{g}. The assigns to each gGg\in G an automorphism Adg:gg\mathrm{Ad}_g:\mathfrak{g}\to\mathfrak{g}. The coadjoint action is the action of GG on the dual vector space g\mathfrak{g}^* (canonically analogous to a fiber of a ) defined by Adg:gg,Adg(λ):=λAdg1. \mathrm{Ad}^*_g:\mathfrak{g}^*\to\mathfrak{g}^*, \qquad \mathrm{Ad}^*_g(\lambda) := \lambda\circ \mathrm{Ad}_{g^{-1}}. Equivalently, Adg\mathrm{Ad}^*_g is characterized by the pairing identity [ \langle \mathrm{Ad}^*_g\lambda,, X\rangle

\langle \lambda,, \mathrm{Ad}_{g^{-1}}X\rangle \quad (\lambda\in\mathfrak{g}^*,, X\in\mathfrak{g}). ] The assignment gAdgg\mapsto \mathrm{Ad}^*_g is a smooth group homomorphism GGL(g)G\to \mathrm{GL}(\mathfrak{g}^*).

Examples

  1. Abelian groups. If GG is abelian, then Ad\mathrm{Ad} is trivial, hence Ad\mathrm{Ad}^* is also trivial: Adg=id\mathrm{Ad}^*_g=\mathrm{id} for all gg.
  2. Compact rotations. For G=SO(3)G=\mathrm{SO}(3), using the standard inner product to identify so(3)so(3)R3\mathfrak{so}(3)\cong\mathfrak{so}(3)^*\cong\mathbb{R}^3, the coadjoint action corresponds to the usual rotation action on R3\mathbb{R}^3.
  3. Matrix groups with trace pairing. For G=GL(n,R)G=\mathrm{GL}(n,\mathbb{R}), identifying gl(n,R)\mathfrak{gl}(n,\mathbb{R})^* with matrices via the trace pairing A,B=tr(AB)\langle A,B\rangle=\mathrm{tr}(A^\top B), the coadjoint action corresponds (up to this identification) to a conjugation-type action.