Chern class via Chern–Weil theory

Characteristic cohomology classes of a complex vector bundle defined from curvature using invariant polynomials.
Chern class via Chern–Weil theory

Let MM be a and let π:EM\pi:E\to M be a complex vector bundle of rank nn equipped with a (linear) \nabla. Write FΩ2(M;End(E))F_\nabla\in\Omega^2(M;\mathrm{End}(E)) for its .

Definition (Chern forms and Chern classes)

The total Chern form of \nabla is the even differential form

c()  :=  det ⁣(I+i2πF)    Ωeven(M), c(\nabla)\;:=\;\det\!\Big(I+\frac{i}{2\pi}F_\nabla\Big)\;\in\;\Omega^{\mathrm{even}}(M),

where the determinant is computed fiberwise after identifying End(E)\mathrm{End}(E) with matrices in local frames. Expanding by degree gives

c()=1+c1()++cn(),ck()Ω2k(M). c(\nabla)=1+c_1(\nabla)+\cdots+c_n(\nabla), \qquad c_k(\nabla)\in\Omega^{2k}(M).

Then:

  1. Each ck()c_k(\nabla) is closed, i.e. dck()=0d\,c_k(\nabla)=0, where dd is the .
  2. The de Rham cohomology class [ck()]HdR2k(M)[c_k(\nabla)]\in H^{2k}_{\mathrm{dR}}(M) is independent of the choice of \nabla.
  3. The kkth Chern class ck(E)H2k(M;Z)c_k(E)\in H^{2k}(M;\mathbb Z) is the unique integral cohomology class whose image under the natural map H2k(M;Z)H2k(M;R)HdR2k(M) H^{2k}(M;\mathbb Z)\longrightarrow H^{2k}(M;\mathbb R)\cong H^{2k}_{\mathrm{dR}}(M) equals [ck()][c_k(\nabla)].

Equivalently, ck(E)c_k(E) is the characteristic class obtained by the Chern–Weil construction for the structure group U(n)U(n) of a Hermitian bundle (or the corresponding of unitary frames) using the invariant polynomial given by the kkth elementary symmetric function of eigenvalues.

The Chern classes are natural under pullback: for any f:NMf:N\to M,

ck(fE)=fck(E)H2k(N;Z). c_k(f^*E)=f^*c_k(E)\in H^{2k}(N;\mathbb Z).

Examples

  1. Trivial bundle. If EM×CnE\cong M\times\mathbb C^n admits the flat connection (F=0F_\nabla=0), then c()=1c(\nabla)=1 and hence ck(E)=0c_k(E)=0 for all k1k\ge 1.

  2. Complex line bundle. If rankCE=1\mathrm{rank}_{\mathbb C}E=1, then

    c()=1+i2πF, c(\nabla)=1+\frac{i}{2\pi}F_\nabla,

    so c1(E)c_1(E) is represented in de Rham cohomology by the real 2-form i2πF\frac{i}{2\pi}F_\nabla.

  3. Whitney sum behavior (curvature-level). If E=E1E2E=E_1\oplus E_2 with a block-diagonal connection =12\nabla=\nabla_1\oplus\nabla_2, then FF_\nabla is block-diagonal and

    c()=c(1)c(2), c(\nabla)=c(\nabla_1)\wedge c(\nabla_2),

    recovering the usual multiplicativity of total Chern classes under direct sum.