Chern character via Chern–Weil theory

A characteristic class of complex vector bundles defined as the trace of the exponential of curvature; it is additive under direct sum.
Chern character via Chern–Weil theory

Let MM be a and let EME\to M be a complex vector bundle equipped with a \nabla with FΩ2(M;End(E))F_\nabla\in\Omega^2(M;\mathrm{End}(E)).

Definition (Chern character form and Chern character)

The Chern character form of \nabla is the even differential form

ch()  :=  tr ⁣(exp ⁣(i2πF))Ωeven(M), \mathrm{ch}(\nabla)\;:=\;\mathrm{tr}\!\left(\exp\!\Big(\frac{i}{2\pi}F_\nabla\Big)\right)\in\Omega^{\mathrm{even}}(M),

where the exponential is taken as a formal power series and tr\mathrm{tr} is the fiberwise trace. Writing by degree,

ch()=ch0()+ch1()+ch2()+,chk()Ω2k(M). \mathrm{ch}(\nabla)=\mathrm{ch}_0(\nabla)+\mathrm{ch}_1(\nabla)+\mathrm{ch}_2(\nabla)+\cdots, \qquad \mathrm{ch}_k(\nabla)\in\Omega^{2k}(M).

Then:

  1. Each chk()\mathrm{ch}_k(\nabla) is closed: dchk()=0d\,\mathrm{ch}_k(\nabla)=0, where dd is the .
  2. The de Rham class [ch()]HdReven(M)[\mathrm{ch}(\nabla)]\in H^{\mathrm{even}}_{\mathrm{dR}}(M) is independent of \nabla.
  3. The Chern character ch(E)Heven(M;Q)\mathrm{ch}(E)\in H^{\mathrm{even}}(M;\mathbb Q) is the rational cohomology class whose image in de Rham cohomology equals [ch()][\mathrm{ch}(\nabla)].

The Chern character is natural under pullback: for any f:NMf:N\to M,

ch(fE)=fch(E). \mathrm{ch}(f^*E)=f^*\mathrm{ch}(E).

It is also additive under direct sum (already at the level of forms): if =12\nabla=\nabla_1\oplus\nabla_2 on E1E2E_1\oplus E_2, then

ch()=ch(1)+ch(2). \mathrm{ch}(\nabla)=\mathrm{ch}(\nabla_1)+\mathrm{ch}(\nabla_2).

Examples

  1. Rank. The degree-zero component is the rank:

    ch0(E)=rankC(E)H0(M;Q). \mathrm{ch}_0(E)=\mathrm{rank}_{\mathbb C}(E)\in H^0(M;\mathbb Q).
  2. Line bundles. For a complex line bundle LML\to M with first Chern class c1(L)H2(M;Z)c_1(L)\in H^2(M;\mathbb Z),

    ch(L)=exp(c1(L))=1+c1(L)+12c1(L)2+ \mathrm{ch}(L)=\exp(c_1(L))=1+c_1(L)+\tfrac12 c_1(L)^2+\cdots

    in rational cohomology.

  3. Trivial / flat bundles. If EE admits a flat connection (F=0F_\nabla=0), then ch()=rank(E)\mathrm{ch}(\nabla)=\mathrm{rank}(E), so chk(E)=0\mathrm{ch}_k(E)=0 for all k1k\ge 1 in de Rham cohomology.