Adjoint representation of a Lie algebra

The representation of a Lie algebra on itself given by bracketing with a fixed element.
Adjoint representation of a Lie algebra

Let g\mathfrak{g} be a Lie algebra with bracket [,][\cdot,\cdot]. The adjoint representation (often written ad\mathrm{ad}) is the linear map

ad:gEnd(g),adX(Y):=[X,Y]. \mathrm{ad}:\mathfrak{g}\to \mathrm{End}(\mathfrak{g}), \qquad \mathrm{ad}_X(Y):=[X,Y].

The defining property is that ad\mathrm{ad} is a Lie algebra homomorphism:

ad[X,Y]=[adX,adY]in End(g), \mathrm{ad}_{[X,Y]}=[\mathrm{ad}_X,\mathrm{ad}_Y] \quad\text{in }\mathrm{End}(\mathfrak{g}),

where the bracket on the right is the commutator of endomorphisms. This identity is equivalent to the Jacobi identity in g\mathfrak{g}.

If g\mathfrak{g} arises as the of a Lie group GG, then ad\mathrm{ad} is the differential at the identity of the Ad:GGL(g)\mathrm{Ad}:G\to \mathrm{GL}(\mathfrak{g}).

Examples

  1. Abelian Lie algebra. If g\mathfrak{g} is abelian, then [X,Y]=0[X,Y]=0 for all X,YX,Y, so adX=0\mathrm{ad}_X=0 for every XX.
  2. Matrices. For g=gl(n,R)\mathfrak{g}=\mathfrak{gl}(n,\mathbb{R}), adA(B)=ABBA\mathrm{ad}_A(B)=AB-BA. Thus adA\mathrm{ad}_A measures the failure of AA to commute with other matrices.
  3. so(3)\mathfrak{so}(3). Under the identification so(3)R3\mathfrak{so}(3)\cong\mathbb{R}^3 with bracket given by the cross product, adx(y)=x×y\mathrm{ad}_x(y)=x\times y.