Adjoint action of a Lie group

The action of a Lie group on its Lie algebra obtained by differentiating conjugation.
Adjoint action of a Lie group

Let GG be a with Lie algebra g=TeG\mathfrak{g}=T_eG. For each gGg\in G, consider the diffeomorphism of GG given by the

Cg:GG,Cg(h)=ghg1. C_g:G\to G,\qquad C_g(h)=ghg^{-1}.

The adjoint action (often written Ad\mathrm{Ad}) is the map

Ad:GAut(g),Adg:=(dCg)e:gg. \mathrm{Ad}:G\to \mathrm{Aut}(\mathfrak{g}), \qquad \mathrm{Ad}_g := (\mathrm{d}C_g)_e:\mathfrak{g}\to\mathfrak{g}.

Equivalently, Adg\mathrm{Ad}_g is the unique linear map such that for every XgX\in\mathfrak{g}, the left-invariant vector field associated to AdgX\mathrm{Ad}_g X is the pushforward of the left-invariant vector field associated to XX under CgC_g.

The map Ad\mathrm{Ad} is a Lie group homomorphism GGL(g)G\to \mathrm{GL}(\mathfrak{g}), called the adjoint representation of GG on g\mathfrak{g}.

Examples

  1. Matrix Lie groups. For GGL(n,R)G\subset \mathrm{GL}(n,\mathbb{R}), one has Adg(X)=gXg1\mathrm{Ad}_g(X)=gXg^{-1} for XgX\in\mathfrak{g}.
  2. Abelian Lie groups. If GG is abelian, then Cg=idC_g=\mathrm{id} for all gg, hence Adg=idg\mathrm{Ad}_g=\mathrm{id}_{\mathfrak{g}}.
  3. Rotations. For G=SO(3)G=\mathrm{SO}(3), identifying so(3)\mathfrak{so}(3) with R3\mathbb{R}^3 via the cross-product isomorphism, Adg\mathrm{Ad}_g corresponds to the usual rotation of vectors in R3\mathbb{R}^3 by gg.