Legendre transform

A smooth, strict-convex special case of convex conjugation defined via the gradient map.
Legendre transform

A Legendre transform of a differentiable f:URf:U\to\mathbb{R} on an open convex set URnU\subseteq\mathbb{R}^n is the function fLf^{\mathcal L} defined on the set f(U)Rn\nabla f(U)\subseteq\mathbb{R}^n by

fL(p)  =  p,xf(x)where p=f(x). f^{\mathcal L}(p) \;=\; \langle p,x\rangle - f(x) \quad\text{where } p=\nabla f(x).

Strict convexity ensures that for each pf(U)p\in\nabla f(U) there is a unique xUx\in U with p=f(x)p=\nabla f(x), so the value is well-defined.

The Legendre transform is the “attained” version of the when ff is smooth enough that the supremum defining ff^* is achieved at the unique point with p=f(x)p=\nabla f(x). It connects convex analysis with the and through the gradient map xf(x)x\mapsto\nabla f(x).

Examples:

  • If f(x)=12x22f(x)=\tfrac12\|x\|_2^2 on Rn\mathbb{R}^n, then f(x)=x\nabla f(x)=x and fL(p)=12p22f^{\mathcal L}(p)=\tfrac12\|p\|_2^2.
  • If f(x)=exf(x)=e^x on R\mathbb{R}, then f(x)=ex\nabla f(x)=e^x so p>0p>0 and fL(p)=plogppf^{\mathcal L}(p)=p\log p - p on (0,)(0,\infty).