Sum of squares of degrees

For a finite group, the sum of the squares of the dimensions of its irreducible complex representations equals the group order.
Sum of squares of degrees

Let GG be a finite group and let kk be an algebraically closed field with char(k)G\operatorname{char}(k)\nmid |G| (in particular, k=Ck=\mathbb C). Let

{V1,,Vr} \{V_1,\dots,V_r\}

be a complete set of pairwise non-isomorphic finite-dimensional of GG over kk, and write di=dimk(Vi)d_i=\dim_k(V_i).

Theorem (sum of squares of degrees)

i=1rdi2  =  G. \sum_{i=1}^r d_i^2 \;=\; |G|.

Equivalently, the underlying kGkG-module of the decomposes as

k[G]    i=1rdiVi, k[G]\;\cong\;\bigoplus_{i=1}^r d_i\,V_i,

and taking dimensions gives dimk(k[G])=G=ididim(Vi)=idi2\dim_k(k[G])=|G|=\sum_i d_i\dim(V_i)=\sum_i d_i^2.

This decomposition is a standard consequence of (so k[G]k[G] is semisimple) together with multiplicity computations using .

Examples

  1. Cyclic group CnC_n.
    Over C\mathbb C, every irreducible representation of CnC_n is 11-dimensional (a character). There are nn such characters, so

    idi2  =  12++12n times  =  n  =  Cn. \sum_i d_i^2 \;=\; \underbrace{1^2+\cdots+1^2}_{n\text{ times}} \;=\; n \;=\; |C_n|.
  2. Symmetric group S3S_3 (order 66).
    S3S_3 has irreducible degrees 1,1,21,1,2 (trivial, sign, and the 22-dimensional standard representation), hence

    12+12+22  =  6  =  S3. 1^2+1^2+2^2 \;=\; 6 \;=\; |S_3|.
  3. Dihedral group D8D_8 (symmetries of a square, order 88).
    D8D_8 has four 11-dimensional irreducibles and one 22-dimensional irreducible, so

    412+122  =  8  =  D8. 4\cdot 1^2 + 1\cdot 2^2 \;=\; 8 \;=\; |D_8|.