Schur's Lemma

Intertwiners between irreducible representations are either zero or isomorphisms; equivariant endomorphisms form a division algebra (scalars over ℂ).
Schur’s Lemma

Let GG be a group and let kk be a field. A (finite-dimensional) kk- of GG is a kk-vector space VV with a homomorphism ρV:GGL(V)\rho_V: G \to \mathrm{GL}(V). A GG-intertwiner (or GG-map) f:VWf:V\to W between two representations is a kk-linear map satisfying

f(ρV(g)v)  =  ρW(g)f(v)for all gG, vV. f(\rho_V(g)v) \;=\; \rho_W(g)f(v)\quad \text{for all } g\in G,\ v\in V.

Equivalently, ff is a for kGkG-modules, where kGkG is the .

Theorem (Schur’s Lemma)

Let V,WV,W be of GG over kk. Then:

  1. Every nonzero GG-intertwiner f:VWf:V\to W is an isomorphism.
    In particular, if V≇WV\not\cong W, then HomG(V,W)=0\mathrm{Hom}_G(V,W)=0.

  2. The endomorphism ring EndG(V)=HomG(V,V)\mathrm{End}_G(V)=\mathrm{Hom}_G(V,V) is a division ring (every nonzero element is invertible).

  3. If kk is algebraically closed and VV is finite-dimensional (e.g. k=Ck=\mathbb{C}), then

    EndG(V)  =  kidV, \mathrm{End}_G(V) \;=\; k\cdot \mathrm{id}_V,

    i.e. every GG-equivariant endomorphism is scalar multiplication.

This result is frequently paired with character theory and the corollary that central elements act by scalars on irreducibles (see ).

Examples

Example 1: Cyclic group CnC_n over C\mathbb{C}

All irreducible C\mathbb{C}-representations of CnC_n are 1-dimensional. If χ,ψ\chi,\psi are distinct 1-dimensional characters, then any CnC_n-equivariant map f:CχCψf:\mathbb{C}_\chi\to \mathbb{C}_\psi must be zero, because equivariance forces

f(χ(g)v)=ψ(g)f(v) f(\chi(g)v)=\psi(g)f(v)

for all gg, and choosing gg with χ(g)ψ(g)\chi(g)\neq \psi(g) implies f(v)=0f(v)=0. If χ=ψ\chi=\psi, then EndCn(Cχ)=C\mathrm{End}_{C_n}(\mathbb{C}_\chi)=\mathbb{C}.

Example 2: The standard 2D irreducible of S3S_3

Let VV be the standard 2-dimensional of S3S_3 (e.g. the reflection representation on the plane of an equilateral triangle). Schur’s lemma over C\mathbb{C} says any S3S_3-equivariant T:VVT:V\to V must be of the form T=λIT=\lambda I.
So the commutant {TEnd(V):Tρ(g)=ρ(g)T g}\{T\in \mathrm{End}(V): T\rho(g)=\rho(g)T \ \forall g\} is exactly CI\mathbb{C}\cdot I.

Example 3: A real irreducible where EndG(V)R\mathrm{End}_G(V)\neq \mathbb{R}

Let G=C3=rG=C_3=\langle r\rangle act on V=R2V=\mathbb{R}^2 by rotation by 120120^\circ. This is an irreducible real representation. The real matrices commuting with a 120120^\circ rotation are precisely the real linear combinations of II and that rotation (equivalently, they identify with C\mathbb{C} acting on R2C\mathbb{R}^2\cong \mathbb{C}). Thus

EndC3(V)C, \mathrm{End}_{C_3}(V)\cong \mathbb{C},

illustrating the “division ring” conclusion over non-algebraically-closed fields.