Group representation

A linear action of a group on a vector space, equivalently a homomorphism into a general linear group.
Group representation

Definition

Let GG be a group and let kk be a field. A (linear) representation of GG over kk is a pair (V,ρ)(V,\rho) where

  • VV is a finite-dimensional over kk, and
  • ρ:GGL(V)\rho: G \to \mathrm{GL}(V) is a group homomorphism.

Equivalently, GG acts on VV by kk-linear automorphisms via

gv:=ρ(g)(v), g\cdot v := \rho(g)(v),

so that ev=ve\cdot v = v and (gh)v=g(hv)(gh)\cdot v = g\cdot(h\cdot v) for all g,hGg,h\in G, vVv\in V.

The dimension (or degree) of the representation is dimk(V)\dim_k(V).

Module and group-algebra viewpoint

A representation (V,ρ)(V,\rho) is equivalently a left module over the k[G]k[G]: extend ρ\rho kk-linearly to an algebra homomorphism

k[G]Endk(V), k[G]\longrightarrow \mathrm{End}_k(V),

where Endk(V)\mathrm{End}_k(V) consists of VVV\to V.

Morphisms of representations

A homomorphism of representations f:(V,ρ)(W,σ)f:(V,\rho)\to (W,\sigma) is a kk-linear map f:VWf:V\to W such that

f(ρ(g)v)=σ(g)f(v)for all gG, vV. f(\rho(g)v)=\sigma(g)f(v)\quad\text{for all } g\in G,\ v\in V.

Equivalently, ff is a k[G]k[G]-module homomorphism (compare ).

Character

To any representation one associates its χρ(g)=tr(ρ(g))\chi_\rho(g)=\mathrm{tr}(\rho(g)), using the .

Examples

  1. Trivial representation (any group).
    Take V=kV=k and ρ(g)=idk\rho(g)=\mathrm{id}_k for all gGg\in G. Then gv=vg\cdot v=v for all gg, and χ(g)=1\chi(g)=1.

  2. Sign representation of S3S_3.
    Over any field kk with char(k)2\mathrm{char}(k)\neq 2, define ρ:S3k×GL1(k)\rho:S_3\to k^\times\subset \mathrm{GL}_1(k) by ρ(σ)=sgn(σ)\rho(\sigma)=\mathrm{sgn}(\sigma). This is 1-dimensional and nontrivial.

  3. One-dimensional representations of a cyclic group.
    Let Cn=ggn=1C_n=\langle g\mid g^n=1\rangle, and take k=Ck=\mathbb{C}. For each integer jj, define ρj:CnC×\rho_j:C_n\to \mathbb{C}^\times by ρj(g)=ζnj\rho_j(g)=\zeta_n^j, where ζn=e2πi/n\zeta_n=e^{2\pi i/n}. Then ρj(gm)=ζnjm\rho_j(g^m)=\zeta_n^{jm} and dim(ρj)=1\dim(\rho_j)=1.

See also: , , .