Character orthogonality

Irreducible complex characters are orthonormal under the standard inner product on class functions.
Character orthogonality

Let GG be a finite group. A (complex) χ:GC\chi:G\to\mathbb C is a : it is constant on each .

Inner product on class functions

On the space Cl(G)\mathrm{Cl}(G) of complex class functions, define

f,g  =  1GxGf(x)g(x). \langle f, g\rangle \;=\; \frac{1}{|G|}\sum_{x\in G} f(x)\,\overline{g(x)}.

This is a Hermitian inner product (compare and ).

Theorem (orthogonality of irreducible characters)

Let χ1,,χr\chi_1,\dots,\chi_r be the distinct of GG over C\mathbb C. Then:

  1. Row orthogonality (orthonormality):

    χi,χj=δij. \langle \chi_i, \chi_j\rangle = \delta_{ij}.

    In particular, for any character χ\chi,

    χ,χZ0, \langle \chi,\chi\rangle \in \mathbb Z_{\ge 0},

    and χ\chi is irreducible iff χ,χ=1\langle \chi,\chi\rangle=1 (see also ).

  2. Completeness: The set {χ1,,χr}\{\chi_1,\dots,\chi_r\} is an orthonormal basis of Cl(G)\mathrm{Cl}(G). Hence r=dimCCl(G)r=\dim_\mathbb C \mathrm{Cl}(G), which equals the number of conjugacy classes (cf. ).

  3. Column orthogonality (one common form): for g,hGg,h\in G,

    i=1rχi(g)χi(h)={0,if g and h are not conjugate,CG(g),if g and h are conjugate, \sum_{i=1}^r \chi_i(g)\,\overline{\chi_i(h)} = \begin{cases} 0, & \text{if } g \text{ and } h \text{ are not conjugate},\\[4pt] |C_G(g)|, & \text{if } g \text{ and } h \text{ are conjugate}, \end{cases}

    where CG(g)C_G(g) is the of gg. In particular,

    i=1rχi(g)2=CG(g). \sum_{i=1}^r |\chi_i(g)|^2 = |C_G(g)|.

These identities are proved using complete reducibility (via ), the decomposition of tensor products, and .

Examples

  1. Cyclic group CnC_n: discrete Fourier orthogonality.
    Let Cn=tC_n=\langle t\rangle. Its irreducible characters are χj(tm)=ζnjm\chi_j(t^m)=\zeta_n^{jm} for j=0,,n1j=0,\dots,n-1. Then

    χj,χ=1nm=0n1ζnjmζnm=1nm=0n1ζn(j)m=δj. \langle \chi_j,\chi_\ell\rangle = \frac{1}{n}\sum_{m=0}^{n-1} \zeta_n^{jm}\overline{\zeta_n^{\ell m}} = \frac{1}{n}\sum_{m=0}^{n-1} \zeta_n^{(j-\ell)m} = \delta_{j\ell}.
  2. S3S_3: checking row orthogonality from the character table.
    S3S_3 has three conjugacy classes: ()(), transpositions, and 3-cycles. Let χtriv,χsgn,χstd\chi_{\mathrm{triv}},\chi_{\mathrm{sgn}},\chi_{\mathrm{std}} be the irreducible characters (degrees 1,1,21,1,2). Using the class sizes 1,3,21,3,2 and values

    χtriv=(1,1,1),χsgn=(1,1,1),χstd=(2,0,1), \chi_{\mathrm{triv}}=(1,1,1),\quad \chi_{\mathrm{sgn}}=(1,-1,1),\quad \chi_{\mathrm{std}}=(2,0,-1),

    one computes for example

    χstd,χsgn=16(121+30(1)+2(1)1)=0, \langle \chi_{\mathrm{std}},\chi_{\mathrm{sgn}}\rangle =\frac{1}{6}\Big(1\cdot 2\cdot 1 + 3\cdot 0\cdot(-1) + 2\cdot (-1)\cdot 1\Big)=0,

    and

    χstd,χstd=16(122+302+212)=1, \langle \chi_{\mathrm{std}},\chi_{\mathrm{std}}\rangle =\frac{1}{6}\Big(1\cdot |2|^2 + 3\cdot |0|^2 + 2\cdot |-1|^2\Big)=1,

    confirming orthogonality and irreducibility.

  3. Column orthogonality in S3S_3: centralizer sizes.
    In S3S_3, a transposition τ\tau has centralizer size CS3(τ)=2|C_{S_3}(\tau)|=2. Column orthogonality predicts

    χtriv(τ)2+χsgn(τ)2+χstd(τ)2=12+12+02=2, |\chi_{\mathrm{triv}}(\tau)|^2 + |\chi_{\mathrm{sgn}}(\tau)|^2 + |\chi_{\mathrm{std}}(\tau)|^2 = |1|^2 + |-1|^2 + |0|^2 = 2,

    matching CS3(τ)|C_{S_3}(\tau)|.