Character of a Direct Sum

For complex representations, the character of a direct sum is the sum of the characters.
Character of a Direct Sum

Let GG be a finite group and let VV be a finite-dimensional complex with action ρV:GGL(V)\rho_V:G\to \mathrm{GL}(V). Its is the class function

χV(g)  =  tr(ρV(g)), \chi_V(g) \;=\; \mathrm{tr}(\rho_V(g)),

using the .

If VV and WW are representations, their direct sum VWV\oplus W is a representation with

ρVW(g)  =  (ρV(g)00ρW(g)). \rho_{V\oplus W}(g) \;=\; \begin{pmatrix} \rho_V(g) & 0\\ 0 & \rho_W(g) \end{pmatrix}.

Proposition

For all gGg\in G,

χVW(g)  =  χV(g)+χW(g). \chi_{V\oplus W}(g) \;=\; \chi_V(g) + \chi_W(g).

More generally, for a finite direct sum i=1mVi\bigoplus_{i=1}^m V_i,

χiVi  =  i=1mχVi. \chi_{\oplus_i V_i} \;=\; \sum_{i=1}^m \chi_{V_i}.

This identity is used constantly alongside to compute multiplicities of inside a given representation.

Examples

Example 1: S3S_3 permutation representation on 3 letters

Let V=C3V=\mathbb{C}^3 with S3S_3 acting by permuting the standard basis. Its character counts fixed points:

  • χV(e)=3\chi_V(e)=3,
  • for a transposition, χV(transposition)=1\chi_V(\text{transposition})=1,
  • for a 3-cycle, χV(3-cycle)=0\chi_V(\text{3-cycle})=0.

This representation decomposes as V1VstdV \cong \mathbf{1} \oplus V_{\mathrm{std}}, where 1\mathbf{1} is the trivial rep and VstdV_{\mathrm{std}} is the 2D standard irreducible. The characters satisfy

χV=χ1+χstd, \chi_V = \chi_{\mathbf{1}} + \chi_{\mathrm{std}},

with χ1=(1,1,1)\chi_{\mathbf{1}}=(1,1,1) and χstd=(2,0,1)\chi_{\mathrm{std}}=(2,0,-1) on the three conjugacy classes, giving (3,1,0)(3,1,0) as required.

Example 2: Cyclic group CnC_n

Let G=Cn=gG=C_n=\langle g\rangle. Fix ζ=e2πi/n\zeta=e^{2\pi i/n}. For integers a,ba,b, let VaV_a and VbV_b be 1D representations with gg acting by ζa\zeta^a and ζb\zeta^b. Then

χVa(gm)=ζam,χVb(gm)=ζbm, \chi_{V_a}(g^m)=\zeta^{am},\qquad \chi_{V_b}(g^m)=\zeta^{bm},

and the direct sum satisfies

χVaVb(gm)=ζam+ζbm. \chi_{V_a\oplus V_b}(g^m)=\zeta^{am}+\zeta^{bm}.

Example 3: Adding a trivial summand

For any VV, the character of V1V\oplus \mathbf{1} is χV+1\chi_V + 1, i.e. χV1(g)=χV(g)+1\chi_{V\oplus \mathbf{1}}(g)=\chi_V(g)+1 for every gGg\in G.