Tor

The left derived functors of tensor product; measures failure of tensor to be left exact (flatness).
Tor

Let RR be a .

To form a tensor product over RR in full generality, one typically takes a right RR-module MM and a left RR-module NN, producing an abelian group

MRN, M \otimes_R N,

see . (If RR is commutative, one may treat both as left RR-modules.)

Definition (via a projective resolution)

Choose a PMP_\bullet \to M by projective right RR-modules:

P2P1P0M0. \cdots \to P_2 \to P_1 \to P_0 \to M \to 0.

Tensor with NN to obtain a PRNP_\bullet \otimes_R N, and define

TornR(M,N)  :=  Hn(PRN), \mathrm{Tor}^R_n(M,N)\;:=\; H_n(P_\bullet \otimes_R N),

where Hn()H_n(-) denotes .

This is well-defined up to canonical isomorphism and is functorial in both variables.

Basic properties

Examples

Example 1: Vector spaces over a field

If kk is a field and V,WV,W are kk-vector spaces, every kk-module is free (hence projective), so

Tornk(V,W)=0(n>0),Tor0k(V,W)=VkW. \mathrm{Tor}^k_n(V,W)=0 \quad (n>0), \qquad \mathrm{Tor}^k_0(V,W)=V\otimes_k W.

Example 2: Tor1Z(Z/n,A)A[n]\mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n, A)\cong A[n]

Use the standard projective resolution of Z/n\mathbb Z/n:

0Z×nZZ/n0. 0 \to \mathbb Z \xrightarrow{\times n} \mathbb Z \to \mathbb Z/n \to 0.

Tensor with AA to get

0A×nA(Z/n)ZA0. 0 \to A \xrightarrow{\times n} A \to (\mathbb Z/n)\otimes_{\mathbb Z} A \to 0.

The homology at the left term is

Tor1Z(Z/n,A)    ker(A×nA)  =  {aA:na=0}=:A[n]. \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n, A)\;\cong\;\ker(A \xrightarrow{\times n} A)\;=\;\{a\in A : na=0\}=:A[n].

Also (Z/n)ZAA/nA(\mathbb Z/n)\otimes_{\mathbb Z}A\cong A/nA, so Tor0Z(Z/n,A)A/nA\mathrm{Tor}^{\mathbb Z}_0(\mathbb Z/n,A)\cong A/nA.

Example 3: Tor1Z(Z/n,Z/m)Z/gcd(n,m)\mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,\mathbb Z/m)\cong \mathbb Z/\gcd(n,m)

From Example 2 with A=Z/mA=\mathbb Z/m, the nn-torsion subgroup has order gcd(n,m)\gcd(n,m) and is cyclic, hence

Tor1Z(Z/n,Z/m)Z/gcd(n,m). \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,\mathbb Z/m)\cong \mathbb Z/\gcd(n,m).

(As in the Ext computations over Z\mathbb Z, these cyclic modules have projective dimension 11, so ToriZ(Z/n,)=0\mathrm{Tor}^{\mathbb Z}_i(\mathbb Z/n,-)=0 for i2i\ge 2.)