Let R R R be a ring
.
To form a tensor product over R R R in full generality, one typically takes a right R R R -module M M M and a left R R R -module N N N , producing an abelian group
M ⊗ R N ,
M \otimes_R N,
M ⊗ R N , see tensor product
. (If R R R is commutative, one may treat both as left R R R -modules.)
Definition (via a projective resolution) Choose a projective resolution
P ∙ → M P_\bullet \to M P ∙ → M by projective right R R R -modules:
⋯ → P 2 → P 1 → P 0 → M → 0.
\cdots \to P_2 \to P_1 \to P_0 \to M \to 0.
⋯ → P 2 → P 1 → P 0 → M → 0. Tensor with N N N to obtain a chain complex
P ∙ ⊗ R N P_\bullet \otimes_R N P ∙ ⊗ R N , and define
T o r n R ( M , N ) : = H n ( P ∙ ⊗ R N ) ,
\mathrm{Tor}^R_n(M,N)\;:=\; H_n(P_\bullet \otimes_R N),
Tor n R ( M , N ) := H n ( P ∙ ⊗ R N ) , where H n ( − ) H_n(-) H n ( − ) denotes homology
.
This is well-defined up to canonical isomorphism and is functorial in both variables.
Basic properties T o r 0 R ( M , N ) ≅ M ⊗ R N \mathrm{Tor}^R_0(M,N)\cong M\otimes_R N Tor 0 R ( M , N ) ≅ M ⊗ R N .Because tensor is right exact
, the derived functors T o r n R \mathrm{Tor}^R_n Tor n R measure precisely the failure of tensor to be left exact. In particular, a module N N N is flat
iff T o r 1 R ( − , N ) = 0 \mathrm{Tor}^R_1(-,N)=0 Tor 1 R ( − , N ) = 0 (equivalently, iff tensoring with N N N preserves injections). Any short exact sequence
gives rise to a long exact sequence in Tor
, a special case of the long exact sequence for derived functors
. Examples Example 1: Vector spaces over a field If k k k is a field and V , W V,W V , W are k k k -vector spaces, every k k k -module is free (hence projective), so
T o r n k ( V , W ) = 0 ( n > 0 ) , T o r 0 k ( V , W ) = V ⊗ k W .
\mathrm{Tor}^k_n(V,W)=0 \quad (n>0), \qquad \mathrm{Tor}^k_0(V,W)=V\otimes_k W.
Tor n k ( V , W ) = 0 ( n > 0 ) , Tor 0 k ( V , W ) = V ⊗ k W . Example 2: T o r 1 Z ( Z / n , A ) ≅ A [ n ] \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n, A)\cong A[n] Tor 1 Z ( Z / n , A ) ≅ A [ n ] Use the standard projective resolution of Z / n \mathbb Z/n Z / n :
0 → Z → × n Z → Z / n → 0.
0 \to \mathbb Z \xrightarrow{\times n} \mathbb Z \to \mathbb Z/n \to 0.
0 → Z × n Z → Z / n → 0. Tensor with A A A to get
0 → A → × n A → ( Z / n ) ⊗ Z A → 0.
0 \to A \xrightarrow{\times n} A \to (\mathbb Z/n)\otimes_{\mathbb Z} A \to 0.
0 → A × n A → ( Z / n ) ⊗ Z A → 0. The homology at the left term is
T o r 1 Z ( Z / n , A ) ≅ ker ( A → × n A ) = { a ∈ A : n a = 0 } = : A [ n ] .
\mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n, A)\;\cong\;\ker(A \xrightarrow{\times n} A)\;=\;\{a\in A : na=0\}=:A[n].
Tor 1 Z ( Z / n , A ) ≅ ker ( A × n A ) = { a ∈ A : na = 0 } =: A [ n ] . Also ( Z / n ) ⊗ Z A ≅ A / n A (\mathbb Z/n)\otimes_{\mathbb Z}A\cong A/nA ( Z / n ) ⊗ Z A ≅ A / n A , so T o r 0 Z ( Z / n , A ) ≅ A / n A \mathrm{Tor}^{\mathbb Z}_0(\mathbb Z/n,A)\cong A/nA Tor 0 Z ( Z / n , A ) ≅ A / n A .
Example 3: T o r 1 Z ( Z / n , Z / m ) ≅ Z / gcd ( n , m ) \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,\mathbb Z/m)\cong \mathbb Z/\gcd(n,m) Tor 1 Z ( Z / n , Z / m ) ≅ Z / g cd( n , m ) From Example 2 with A = Z / m A=\mathbb Z/m A = Z / m , the n n n -torsion subgroup has order gcd ( n , m ) \gcd(n,m) g cd( n , m ) and is cyclic, hence
T o r 1 Z ( Z / n , Z / m ) ≅ Z / gcd ( n , m ) .
\mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,\mathbb Z/m)\cong \mathbb Z/\gcd(n,m).
Tor 1 Z ( Z / n , Z / m ) ≅ Z / g cd( n , m ) . (As in the Ext computations over Z \mathbb Z Z , these cyclic modules have projective dimension 1 1 1 , so T o r i Z ( Z / n , − ) = 0 \mathrm{Tor}^{\mathbb Z}_i(\mathbb Z/n,-)=0 Tor i Z ( Z / n , − ) = 0 for i ≥ 2 i\ge 2 i ≥ 2 .)