Snake lemma corollary: long exact sequence in homology

A short exact sequence of chain complexes induces a natural long exact sequence in homology.
Snake lemma corollary: long exact sequence in homology

Statement

Let

0ABC0 0 \longrightarrow A_\bullet \longrightarrow B_\bullet \longrightarrow C_\bullet \longrightarrow 0

be a short exact sequence of , meaning that for each nn the sequence

0AnBnCn0 0 \to A_n \to B_n \to C_n \to 0

is exact in the sense of , and all differentials commute with the structure maps.

Then there are connecting homomorphisms

δn:Hn(C)Hn1(A) \delta_n : H_n(C_\bullet) \longrightarrow H_{n-1}(A_\bullet)

such that the sequence of

Hn(A)Hn(B)Hn(C) δn Hn1(A)Hn1(B) \cdots \to H_n(A_\bullet) \to H_n(B_\bullet) \to H_n(C_\bullet) \xrightarrow{\ \delta_n\ } H_{n-1}(A_\bullet) \to H_{n-1}(B_\bullet) \to \cdots

is exact.

This long exact sequence is natural in morphisms of short exact sequences of complexes. The maps δn\delta_n are constructed by a standard diagram chase and can be viewed as arising from the ; see also .

Examples

Example 1: Complexes concentrated in degree 00

If A,B,CA_\bullet,B_\bullet,C_\bullet are concentrated in degree 00, then H0(A)=A0H_0(A_\bullet)=A_0, H0(B)=B0H_0(B_\bullet)=B_0, H0(C)=C0H_0(C_\bullet)=C_0 and Hn()=0H_n(-)=0 for n1n\ge 1. The long exact sequence collapses to

0A0B0C00, 0 \to A_0 \to B_0 \to C_0 \to 0,

i.e. it recovers the original short exact sequence of modules.

Example 2: A nontrivial connecting map δ1\delta_1 detecting reduction mod nn

Fix n2n\ge 2. Define complexes (nonzero only in degrees 1,01,0):

  • AA_\bullet: A1=Zd1=nA0=ZA_1=\mathbb Z \xrightarrow{d_1=\cdot n} A_0=\mathbb Z.
  • BB_\bullet: B1=ZZd1(x,y)=nx+yB0=ZB_1=\mathbb Z\oplus \mathbb Z \xrightarrow{d_1(x,y)=nx+y} B_0=\mathbb Z.
  • CC_\bullet: C1=ZC0=0C_1=\mathbb Z \to C_0=0 (so d1=0d_1=0).

Define maps ABA_\bullet \to B_\bullet by

A1B1, x(x,0),A0B0, xx, A_1\to B_1,\ x\mapsto (x,0), \qquad A_0\to B_0,\ x\mapsto x,

and BCB_\bullet\to C_\bullet by

B1C1, (x,y)y,B0C0, z0. B_1\to C_1,\ (x,y)\mapsto y,\qquad B_0\to C_0,\ z\mapsto 0.

Then 0ABC00\to A_\bullet\to B_\bullet\to C_\bullet\to 0 is short exact degreewise.

Compute homology:

  • H1(A)=0H_1(A_\bullet)=0, H0(A)Z/nZH_0(A_\bullet)\cong \mathbb Z/n\mathbb Z.
  • H1(C)ZH_1(C_\bullet)\cong \mathbb Z, H0(C)=0H_0(C_\bullet)=0.
  • H1(B)=ker(d1)={(x,nx)}ZH_1(B_\bullet)=\ker(d_1)=\{(x,-nx)\}\cong\mathbb Z, and H0(B)=0H_0(B_\bullet)=0 (since d1(0,1)=1d_1(0,1)=1).

The relevant part of the long exact sequence is

H1(B)H1(C)δ1H0(A)H0(B)=0. H_1(B_\bullet)\to H_1(C_\bullet)\xrightarrow{\delta_1} H_0(A_\bullet)\to H_0(B_\bullet)=0.

Under the identifications above, the map H1(B)H1(C)H_1(B_\bullet)\to H_1(C_\bullet) is multiplication by nn, hence its image is nZn\mathbb Z. Exactness forces

ker(δ1)=nZ, \ker(\delta_1)=n\mathbb Z,

so δ1:ZZ/nZ\delta_1:\mathbb Z\to \mathbb Z/n\mathbb Z is precisely reduction mod nn.

Example 3: Split short exact sequences give δn=0\delta_n=0

If the short exact sequence of complexes splits degreewise (e.g. BACB_\bullet \cong A_\bullet \oplus C_\bullet as complexes), then the induced sequence in homology splits and all connecting maps δn\delta_n are zero.