Snake lemma

From a commutative diagram with exact rows, produces an exact sequence of kernels and cokernels with a canonical connecting map.
Snake lemma

The snake lemma is a fundamental diagram-chase statement in the category of RR-modules, and more generally in any .

It relates and (compare also ) across two exact rows ( ).

Theorem (Snake lemma)

Suppose we have a commutative diagram of RR-modules with exact rows

0AiApA0fff0BjBqB0 \begin{array}{ccccccccc} 0 &\to& A' &\xrightarrow{i}& A &\xrightarrow{p}& A'' &\to& 0\\ & & \downarrow f' & & \downarrow f & & \downarrow f'' & & \\ 0 &\to& B' &\xrightarrow{j}& B &\xrightarrow{q}& B'' &\to& 0 \end{array}

Then there is a canonical connecting homomorphism (boundary map)

δ:ker(f)coker(f) \delta:\ker(f'') \longrightarrow \operatorname{coker}(f')

such that the following sequence is exact:

0ker(f)ker(f)ker(f) δ coker(f)coker(f)coker(f)0. 0 \to \ker(f') \to \ker(f) \to \ker(f'') \xrightarrow{\ \delta\ } \operatorname{coker}(f') \to \operatorname{coker}(f) \to \operatorname{coker}(f'') \to 0.

This δ\delta is natural in the diagram, and is the prototype for the appearing in long exact sequences.

Construction of δ\delta (explicit)

Given xker(f)Ax\in \ker(f'')\subseteq A'':

  1. pick aAa\in A with p(a)=xp(a)=x;
  2. since f(x)=0f''(x)=0, commutativity implies q(f(a))=0q(f(a))=0, hence f(a)im(j)f(a)\in \operatorname{im}(j);
  3. choose bBb'\in B' with j(b)=f(a)j(b')=f(a);
  4. define δ(x)\delta(x) to be the class of bb' in coker(f)=B/im(f)\operatorname{coker}(f')=B'/\operatorname{im}(f').

A standard diagram chase shows this is well-defined (independent of choices) and gives exactness.

Examples

  1. Induced map on quotients: the “kernel–cokernel” exact sequence.
    Let g:MMg:M\to M' be an RR-linear map, and let NMN\subseteq M, NMN'\subseteq M' satisfy g(N)Ng(N)\subseteq N'. Consider the commutative diagram with exact rows:

    0NMM/N0gNgg0NMM/N0 \begin{array}{ccccccccc} 0 &\to& N &\to& M &\to& M/N &\to& 0\\ & & \downarrow g|_N & & \downarrow g & & \downarrow \overline g & & \\ 0 &\to& N' &\to& M' &\to& M'/N' &\to& 0 \end{array}

    The snake lemma produces the exact sequence

    0ker(gN)ker(g)ker(g)δcoker(gN)coker(g)coker(g)0, 0\to \ker(g|_N)\to \ker(g)\to \ker(\overline g)\xrightarrow{\delta} \operatorname{coker}(g|_N)\to \operatorname{coker}(g)\to \operatorname{coker}(\overline g)\to 0,

    which cleanly measures how kernels/cokernels change when passing to quotients.

  2. Boundary map in homology from a short exact sequence of complexes.
    Given a degreewise short exact sequence of

    0CCC0, 0\to C'_\bullet \to C_\bullet \to C''_\bullet \to 0,

    one applies the snake lemma to the diagram of cycles and boundaries in each degree to construct the connecting map

    :Hn(C)Hn1(C), \partial: H_n(C''_\bullet)\longrightarrow H_{n-1}(C'_\bullet),

    yielding the usual long exact sequence in . (This is the chain-complex analogue of .)

  3. Computing a boundary map concretely (multiplication on a quotient).
    Fix integers m,nm,n and consider the diagram

    0ZmZZ/m0nnn0ZmZZ/m0 \begin{array}{ccccccccc} 0&\to& \mathbb Z &\xrightarrow{\cdot m}& \mathbb Z &\to& \mathbb Z/m &\to& 0\\ && \downarrow \cdot n && \downarrow \cdot n && \downarrow \cdot n &&\\ 0&\to& \mathbb Z &\xrightarrow{\cdot m}& \mathbb Z &\to& \mathbb Z/m &\to& 0 \end{array}

    The connecting map δ:ker(n:Z/mZ/m)coker(n:ZZ)Z/n\delta:\ker(\cdot n:\mathbb Z/m\to \mathbb Z/m)\to \operatorname{coker}(\cdot n:\mathbb Z\to \mathbb Z)\cong \mathbb Z/n sends a class xZ/m\overline{x}\in\mathbb Z/m with nxmZnx\in m\mathbb Z to the class of nxm\frac{nx}{m} in Z/n\mathbb Z/n. This is a concrete instance of how δ\delta encodes the failure of lifting across the diagram.