Long exact sequence for Tor

The natural long exact sequence in Tor induced by a short exact sequence of modules.
Long exact sequence for Tor

Let RR be a ring. Recall that is the left-derived functor of the tensor product ( ), constructed using a (see also ).

Theorem (long exact sequence in Tor)

Let

0AuAvA0 0 \longrightarrow A' \xrightarrow{u} A \xrightarrow{v} A'' \longrightarrow 0

be a of right RR-modules, and let BB be a left RR-module. Then there are natural connecting homomorphisms

δn:TornR(A,B)Torn1R(A,B)(n1), \delta_n:\operatorname{Tor}_n^R(A'',B)\longrightarrow \operatorname{Tor}_{n-1}^R(A',B) \quad (n\ge 1),

(see ) such that the following sequence is exact:

Tor2R(A,B)δ2Tor1R(A,B)Tor1R(A,B)Tor1R(A,B)δ1ARBARBARB0. \cdots \to \operatorname{Tor}_2^R(A'',B)\xrightarrow{\delta_2}\operatorname{Tor}_1^R(A',B)\to \operatorname{Tor}_1^R(A,B)\to \operatorname{Tor}_1^R(A'',B) \xrightarrow{\delta_1} A'\otimes_R B \to A\otimes_R B \to A''\otimes_R B \to 0.

Equivalently, for every n1n\ge 1 one has exactness at the three-term window

TornR(A,B)TornR(A,B)TornR(A,B)δnTorn1R(A,B). \operatorname{Tor}_n^R(A',B)\longrightarrow \operatorname{Tor}_n^R(A,B)\longrightarrow \operatorname{Tor}_n^R(A'',B)\xrightarrow{\delta_n}\operatorname{Tor}_{n-1}^R(A',B).

This is a special case of the general .

Examples

  1. Computing Tor1Z(Z/n,Z/m)\operatorname{Tor}_1^{\mathbb Z}(\mathbb Z/n,\mathbb Z/m).
    Use the short exact sequence

    0ZnZZ/n0. 0\to \mathbb Z \xrightarrow{\cdot n}\mathbb Z \to \mathbb Z/n \to 0.

    Tensor with Z/m\mathbb Z/m. Since ZZ/mZ/m\mathbb Z\otimes \mathbb Z/m\cong \mathbb Z/m, the relevant part of the long exact sequence becomes

    0Tor1Z(Z/n,Z/m)Z/mnZ/m(Z/n)Z/m0. 0 \to \operatorname{Tor}_1^{\mathbb Z}(\mathbb Z/n,\mathbb Z/m) \to \mathbb Z/m \xrightarrow{\cdot n} \mathbb Z/m \to (\mathbb Z/n)\otimes \mathbb Z/m \to 0.

    Hence

    Tor1Z(Z/n,Z/m)ker(n:Z/mZ/m)Z/gcd(n,m). \operatorname{Tor}_1^{\mathbb Z}(\mathbb Z/n,\mathbb Z/m)\cong \ker(\cdot n:\mathbb Z/m\to \mathbb Z/m)\cong \mathbb Z/\gcd(n,m).

    (Also ToriZ(Z/n,)=0\operatorname{Tor}_i^{\mathbb Z}(\mathbb Z/n,-)=0 for i2i\ge 2 because Z/n\mathbb Z/n has a length-1 projective resolution.)

  2. Over a field, higher Tor vanishes.
    If R=kR=k is a field and V,WV,W are kk-vector spaces, then VV is free (hence projective), so Torik(V,W)=0\operatorname{Tor}_i^k(V,W)=0 for all i1i\ge 1. The long exact sequence above reduces to exactness of

    0VkWVkWVkW0, 0\to V'\otimes_k W \to V\otimes_k W \to V''\otimes_k W \to 0,

    reflecting that kW-\otimes_k W is exact.

  3. Dual numbers: Tor1k[ε]/(ε2)(k,k)k\operatorname{Tor}_1^{k[\varepsilon]/(\varepsilon^2)}(k,k)\cong k.
    Let R=k[ε]/(ε2)R=k[\varepsilon]/(\varepsilon^2) and k=R/(ε)k=R/(\varepsilon). The sequence

    0RεRk0 0\to R\xrightarrow{\cdot \varepsilon}R\to k\to 0

    is a projective resolution of kk of length 11. Tensoring with kk makes ε\cdot\varepsilon become 00 (since ε\varepsilon acts as 00 on kk), so

    Tor1R(k,k)ker(0:kk)k. \operatorname{Tor}_1^R(k,k)\cong \ker(0:k\to k)\cong k.