Long exact sequence for Ext

The natural long exact sequence in Ext induced by a short exact sequence of modules.
Long exact sequence for Ext

Let RR be a ring. Recall that is a right-derived functor of ( ), constructed using an (or a in the first variable). See also .

Theorem (long exact sequence in Ext, both variables)

(A) Short exact sequence in the first variable (contravariant)

Let

0AuAvA0 0 \longrightarrow A' \xrightarrow{u} A \xrightarrow{v} A'' \longrightarrow 0

be a of left RR-modules, and let BB be a left RR-module. Then there are natural connecting maps

δn:ExtRn(A,B)ExtRn+1(A,B)(n0), \delta^n:\operatorname{Ext}_R^{n}(A',B)\longrightarrow \operatorname{Ext}_R^{n+1}(A'',B) \quad (n\ge 0),

(see ) and a natural long exact sequence

0HomR(A,B)HomR(A,B)HomR(A,B)ExtR1(A,B)ExtR1(A,B)ExtR1(A,B)ExtR2(A,B). 0\to \operatorname{Hom}_R(A'',B)\to \operatorname{Hom}_R(A,B)\to \operatorname{Hom}_R(A',B) \to \operatorname{Ext}_R^{1}(A'',B)\to \operatorname{Ext}_R^{1}(A,B)\to \operatorname{Ext}_R^{1}(A',B) \to \operatorname{Ext}_R^{2}(A'',B)\to \cdots .

This is a special case of the general .

(B) Short exact sequence in the second variable (covariant)

Let

0BuBvB0 0 \longrightarrow B' \xrightarrow{u} B \xrightarrow{v} B'' \longrightarrow 0

be a short exact sequence of left RR-modules, and let AA be a left RR-module. Then there is a natural long exact sequence

0HomR(A,B)HomR(A,B)HomR(A,B)ExtR1(A,B)ExtR1(A,B)ExtR1(A,B)ExtR2(A,B). 0\to \operatorname{Hom}_R(A,B')\to \operatorname{Hom}_R(A,B)\to \operatorname{Hom}_R(A,B'') \to \operatorname{Ext}_R^{1}(A,B')\to \operatorname{Ext}_R^{1}(A,B)\to \operatorname{Ext}_R^{1}(A,B'') \to \operatorname{Ext}_R^{2}(A,B')\to \cdots .

Examples

  1. Computing ExtZ1(Z/n,A)A/nA\operatorname{Ext}^1_{\mathbb Z}(\mathbb Z/n, A)\cong A/nA.
    Start from

    0ZnZZ/n0. 0\to \mathbb Z \xrightarrow{\cdot n}\mathbb Z \to \mathbb Z/n \to 0.

    Apply HomZ(,A)\operatorname{Hom}_{\mathbb Z}(-,A). Since HomZ(Z,A)A\operatorname{Hom}_{\mathbb Z}(\mathbb Z,A)\cong A, the relevant piece of the long exact sequence is

    AnAExtZ1(Z/n,A)0, A \xrightarrow{\cdot n} A \to \operatorname{Ext}^1_{\mathbb Z}(\mathbb Z/n,A)\to 0,

    so

    ExtZ1(Z/n,A)coker(n:AA)A/nA. \operatorname{Ext}^1_{\mathbb Z}(\mathbb Z/n,A)\cong \operatorname{coker}(\cdot n:A\to A)\cong A/nA.

    (Also ExtZi(Z/n,)=0\operatorname{Ext}^i_{\mathbb Z}(\mathbb Z/n,-)=0 for i2i\ge 2 because Z/n\mathbb Z/n has a length-1 projective resolution.)

  2. Computing ExtZ1(Z/n,Z/m)Z/gcd(n,m)\operatorname{Ext}^1_{\mathbb Z}(\mathbb Z/n, \mathbb Z/m)\cong \mathbb Z/\gcd(n,m).
    Take A=Z/mA=\mathbb Z/m in the previous example:

    ExtZ1(Z/n,Z/m)(Z/m)/n(Z/m)Z/gcd(n,m). \operatorname{Ext}^1_{\mathbb Z}(\mathbb Z/n,\mathbb Z/m)\cong (\mathbb Z/m)/n(\mathbb Z/m) \cong \mathbb Z/\gcd(n,m).
  3. Dual numbers: Extk[ε]/(ε2)1(k,k)k\operatorname{Ext}^1_{k[\varepsilon]/(\varepsilon^2)}(k,k)\cong k.
    Let R=k[ε]/(ε2)R=k[\varepsilon]/(\varepsilon^2), k=R/(ε)k=R/(\varepsilon), and use the projective resolution

    0RεRk0. 0\to R\xrightarrow{\cdot\varepsilon}R\to k\to 0.

    Applying HomR(,k)\operatorname{Hom}_R(-,k) yields the cochain complex

    0HomR(R,k)(ε)HomR(R,k)0, 0\to \operatorname{Hom}_R(R,k)\xrightarrow{(\cdot\varepsilon)^\ast}\operatorname{Hom}_R(R,k)\to 0,

    and (ε)=0(\cdot\varepsilon)^\ast=0 because ε\varepsilon acts as 00 on kk. Hence

    ExtR1(k,k)coker(0:kk)k. \operatorname{Ext}^1_R(k,k)\cong \operatorname{coker}(0:k\to k)\cong k.