Long exact sequence for derived functors

A short exact sequence induces a long exact sequence on left/right derived functors via connecting morphisms.
Long exact sequence for derived functors

Derived functors (see ) turn short exact sequences into long exact sequences in homology/cohomology. Conceptually, this is a systematic abstraction of the and its boundary map; see also .

Theorem (left derived functors)

Let A,B\mathcal A,\mathcal B be and let

F:AB F:\mathcal A \to \mathcal B

be an additive functor that is right exact. Assume A\mathcal A has enough projectives, so the left derived functors LnFL_nF exist.

Then for every

0AuAvA0 0 \to A' \xrightarrow{u} A \xrightarrow{v} A'' \to 0

in A\mathcal A, there are natural connecting morphisms

δn:LnF(A)Ln1F(A) \delta_n: L_nF(A'') \to L_{n-1}F(A')

such that the following sequence is exact:

L2F(A)L2F(A)δ2L1F(A)L1F(A)L1F(A)δ1L0F(A)L0F(A)L0F(A)0. \cdots \to L_2F(A) \to L_2F(A'') \xrightarrow{\delta_2} L_1F(A') \to L_1F(A) \to L_1F(A'') \xrightarrow{\delta_1} L_0F(A') \to L_0F(A) \to L_0F(A'') \to 0.

Moreover, L0FFL_0F \cong F.

Theorem (right derived functors)

Let G:ABG:\mathcal A\to\mathcal B be additive and left exact, and assume A\mathcal A has enough injectives so that the right derived functors RnGR^nG exist.

Then every short exact sequence 0AAA00\to A'\to A\to A''\to 0 yields a natural long exact sequence

0G(A)G(A)G(A)δ0R1G(A)R1G(A)R1G(A)δ1R2G(A). 0 \to G(A') \to G(A) \to G(A'') \xrightarrow{\delta^0} R^1G(A') \to R^1G(A) \to R^1G(A'') \xrightarrow{\delta^1} R^2G(A') \to \cdots.

Important special cases

Examples

Example 1: Computing Tor1Z(Z/n,A)\mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,A) from the long exact sequence

Start with the short exact sequence of Z\mathbb Z-modules

0Z×nZZ/n0. 0 \to \mathbb Z \xrightarrow{\times n} \mathbb Z \to \mathbb Z/n \to 0.

Apply the right exact functor ()ZA(-)\otimes_{\mathbb Z} A. The left derived functors are ToriZ(,A)\mathrm{Tor}^{\mathbb Z}_i(-,A), and the long exact sequence includes the segment

Tor1Z(Z,A)Tor1Z(Z/n,A)ZA×nZA(Z/n)A0. \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z,A)\to \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,A)\to \mathbb Z\otimes A \xrightarrow{\times n} \mathbb Z\otimes A \to (\mathbb Z/n)\otimes A \to 0.

Since Tor1Z(Z,A)=0\mathrm{Tor}^{\mathbb Z}_1(\mathbb Z,A)=0 and ZAA\mathbb Z\otimes A\cong A, this simplifies to

0Tor1Z(Z/n,A)A×nAA/nA0, 0 \to \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,A)\to A \xrightarrow{\times n} A \to A/nA \to 0,

so

Tor1Z(Z/n,A)ker(A×nA)=A[n]. \mathrm{Tor}^{\mathbb Z}_1(\mathbb Z/n,A)\cong \ker(A \xrightarrow{\times n} A)=A[n].

Example 2: Computing ExtZ1(Z/n,A)\mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,A) from the long exact sequence

Apply the left exact functor HomZ(,A)\mathrm{Hom}_{\mathbb Z}(-,A) to the same short exact sequence:

0Z×nZZ/n0. 0 \to \mathbb Z \xrightarrow{\times n} \mathbb Z \to \mathbb Z/n \to 0.

The induced long exact sequence in right derived functors yields the segment

0Hom(Z/n,A)Hom(Z,A)×nHom(Z,A)Ext1(Z/n,A)0. 0 \to \mathrm{Hom}(\mathbb Z/n,A)\to \mathrm{Hom}(\mathbb Z,A)\xrightarrow{\times n}\mathrm{Hom}(\mathbb Z,A)\to \mathrm{Ext}^1(\mathbb Z/n,A)\to 0.

Using Hom(Z,A)A\mathrm{Hom}(\mathbb Z,A)\cong A, we get

ExtZ1(Z/n,A)coker(A×nA)A/nA. \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,A)\cong \mathrm{coker}(A \xrightarrow{\times n} A)\cong A/nA.