Existence of injective resolutions

Every module embeds into an injective module, hence admits an injective resolution.
Existence of injective resolutions

Let RR be a ring and MM a left RR- .

Statement

An of MM is an exact augmented

0MιI0d0I1d1I2d2 0 \to M \xrightarrow{\iota} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} I^2 \xrightarrow{d^2} \cdots

such that each InI^n is an .

Theorem (existence). Every RR-module MM admits an injective resolution.

Equivalently, the category of RR-modules has enough injectives: every module embeds into an injective module.

A standard route to this theorem uses either injective envelopes or explicit “large” injective modules constructed via character modules; is a key tool in many proofs and examples.

Construction (iterating embeddings)

  1. Choose a monomorphism MI0M \hookrightarrow I^0 with I0I^0 injective.
  2. Let C0:=coker(MI0)C^0 := \operatorname{coker}(M \hookrightarrow I^0).
  3. Choose a monomorphism C0I1C^0 \hookrightarrow I^1 with I1I^1 injective, and iterate.

Splicing the resulting short exact sequences yields an exact cochain complex

0MI0I1I2 0 \to M \to I^0 \to I^1 \to I^2 \to \cdots

as required.

Cross-links: , , .

Examples

Example 1: An injective resolution of Z\mathbb Z as a Z\mathbb Z-module

Injective Z\mathbb Z-modules are the divisible abelian groups. The inclusion ZQ\mathbb Z \hookrightarrow \mathbb Q has cokernel Q/Z\mathbb Q/\mathbb Z, and both Q\mathbb Q and Q/Z\mathbb Q/\mathbb Z are divisible, hence injective. Thus

0ZQQ/Z0 0 \longrightarrow \mathbb Z \longrightarrow \mathbb Q \longrightarrow \mathbb Q/\mathbb Z \longrightarrow 0

is an injective resolution of Z\mathbb Z of length 11.

Example 2: An injective resolution of Z/nZ\mathbb Z/n\mathbb Z

The subgroup of Q/Z\mathbb Q/\mathbb Z consisting of elements of order dividing nn is isomorphic to Z/nZ\mathbb Z/n\mathbb Z, giving an injection Z/nZQ/Z\mathbb Z/n\mathbb Z \hookrightarrow \mathbb Q/\mathbb Z. Moreover, multiplication by nn on Q/Z\mathbb Q/\mathbb Z is surjective with kernel Z/nZ\mathbb Z/n\mathbb Z. Hence

0Z/nZQ/Z  n  Q/Z0 0 \longrightarrow \mathbb Z/n\mathbb Z \longrightarrow \mathbb Q/\mathbb Z \xrightarrow{\;\cdot n\;} \mathbb Q/\mathbb Z \longrightarrow 0

is an injective resolution of Z/nZ\mathbb Z/n\mathbb Z of length 11.

Example 3: Over a field, resolutions are trivial

If R=kR=k is a field, every kk-vector space is injective (and projective). So for any kk-module VV,

0VidV0 0 \to V \xrightarrow{\mathrm{id}} V \to 0 \to \cdots

is an injective resolution.