Injective resolution

An exact cochain complex starting at M and continuing with injective modules, used to compute Ext and right derived functors.
Injective resolution

Let RR be a and MM an .

An injective resolution of MM is an augmented

0MηI0d0I1d1I2d2 0 \to M \xrightarrow{\eta} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} I^2 \xrightarrow{d^2} \cdots

such that:

  1. Each IjI^j is an .
  2. The sequence is exact (i.e. an ).

Existence in module categories is guaranteed by .

What resolutions are for

If FF is a functor, its right derived functors are computed by applying FF to an injective resolution and taking ; see .

In particular, for any RR-module NN,

ExtRn(N,M)Hn(HomR(N,I)), \mathrm{Ext}_R^n(N,M) \cong H^n\bigl(\operatorname{Hom}_R(N, I^\bullet)\bigr),

where HomR(N,I)\operatorname{Hom}_R(N,I^\bullet) is a cochain complex (see ).

Examples

Example 1: Over a field, injective resolutions are trivial

If R=kR=k is a field, every kk-vector space is injective. Thus an injective resolution of a kk-vector space VV can be taken as

0V=V00, 0\to V \xrightarrow{=} V \to 0 \to 0 \to \cdots,

and therefore Extkn(W,V)=0\mathrm{Ext}_k^n(W,V)=0 for all n>0n>0 (see ).

Example 2: An injective resolution of Z\mathbb Z

In the category of abelian groups (R=ZR=\mathbb Z), both Q\mathbb Q and Q/Z\mathbb Q/\mathbb Z are injective (they are divisible groups). The sequence

0ZQQ/Z0 0\to \mathbb Z \to \mathbb Q \to \mathbb Q/\mathbb Z \to 0

is exact, hence yields an injective resolution of Z\mathbb Z of length 11.

Using it, one computes

ExtZ1(Z/nZ,Z)H1(Hom(Z/n,[0QQ/Z0])). \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n\mathbb Z,\mathbb Z) \cong H^1\bigl(\operatorname{Hom}(\mathbb Z/n,\, [0\to \mathbb Q\to \mathbb Q/\mathbb Z\to 0])\bigr).

Since Hom(Z/n,Q)=0\operatorname{Hom}(\mathbb Z/n,\mathbb Q)=0 and Hom(Z/n,Q/Z)(Q/Z)[n]Z/nZ\operatorname{Hom}(\mathbb Z/n,\mathbb Q/\mathbb Z)\cong (\mathbb Q/\mathbb Z)[n]\cong \mathbb Z/n\mathbb Z, this gives

ExtZ1(Z/n,Z)Z/nZ. \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,\mathbb Z)\cong \mathbb Z/n\mathbb Z.

(See .)

Example 3: An injective resolution of Z/nZ\mathbb Z/n\mathbb Z and Ext1\mathrm{Ext}^1 between cyclic groups

Embed Z/nZ\mathbb Z/n\mathbb Z into Q/Z\mathbb Q/\mathbb Z as the nn-torsion subgroup (Q/Z)[n](\mathbb Q/\mathbb Z)[n]. Multiplication by nn on Q/Z\mathbb Q/\mathbb Z has kernel (Q/Z)[n](\mathbb Q/\mathbb Z)[n], so

0Z/nZQ/Z×nQ/Z0 0\to \mathbb Z/n\mathbb Z \to \mathbb Q/\mathbb Z \xrightarrow{\times n} \mathbb Q/\mathbb Z \to 0

is exact, with injective terms, hence an injective resolution of Z/nZ\mathbb Z/n\mathbb Z.

Applying Hom(Z/m,)\operatorname{Hom}(\mathbb Z/m,-) yields

0Hom(Z/m,Q/Z)×nHom(Z/m,Q/Z)0, 0\to \operatorname{Hom}(\mathbb Z/m,\mathbb Q/\mathbb Z)\xrightarrow{\times n} \operatorname{Hom}(\mathbb Z/m,\mathbb Q/\mathbb Z)\to 0,

and Hom(Z/m,Q/Z)(Q/Z)[m]Z/mZ\operatorname{Hom}(\mathbb Z/m,\mathbb Q/\mathbb Z)\cong (\mathbb Q/\mathbb Z)[m]\cong \mathbb Z/m\mathbb Z. Therefore

ExtZ1(Z/m,Z/n)coker(×n:Z/mZ/m)Z/gcd(m,n)Z. \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/m,\mathbb Z/n) \cong \operatorname{coker}(\times n:\mathbb Z/m\to\mathbb Z/m) \cong \mathbb Z/\gcd(m,n)\mathbb Z.

(See .)