Let R R R be a ring
and M M M an R-module
.
Definition An injective resolution of M M M is an augmented cochain complex
0 → M → η I 0 → d 0 I 1 → d 1 I 2 → d 2 ⋯
0 \to M \xrightarrow{\eta} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} I^2 \xrightarrow{d^2} \cdots
0 → M η I 0 d 0 I 1 d 1 I 2 d 2 ⋯ such that:
Each I j I^j I j is an injective R-module
. The sequence is exact (i.e. an exact complex
). Existence in module categories is guaranteed by injective resolutions exist
.
What resolutions are for If F F F is a left exact
functor, its right derived functors are computed by applying F F F to an injective resolution and taking cohomology
; see derived functor
.
In particular,
H A H A H U G O S H O R T C O D E 300 s 9 H B H B ( N , M ) ≅ H n ( Hom R ( N , I ∙ ) )
Ext_R^n
(N,M)
\cong H^n\bigl(\operatorname{Hom}_R(N, I^\bullet)\bigr)
H A H A H U GOS H ORTCO D E 300 s 9 H B H B ( N , M ) ≅ H n ( Hom R ( N , I ∙ ) ) for any R R R -module N N N , where Hom R ( N , I ∙ ) \operatorname{Hom}_R(N,I^\bullet) Hom R ( N , I ∙ ) is a cochain complex.
Examples Example 1: Over a field, injective resolutions are trivial If R = k R=k R = k is a field, every k k k -vector space is injective. Thus an injective resolution of a k k k -vector space V V V can be taken as
0 → V → = V → 0 → 0 → ⋯ ,
0\to V \xrightarrow{=} V \to 0 \to 0 \to \cdots,
0 → V = V → 0 → 0 → ⋯ , and therefore H A H A H U G O S H O R T C O D E 300 s 10 H B H B ( W , V ) = 0 Ext_k^n
(W,V)=0 H A H A H U GOS H ORTCO D E 300 s 10 H B H B ( W , V ) = 0 for all n > 0 n>0 n > 0 .
Example 2: An injective resolution of Z \mathbb Z Z In the category of abelian groups (R = Z R=\mathbb Z R = Z ), both Q \mathbb Q Q and Q / Z \mathbb Q/\mathbb Z Q / Z are injective (they are divisible groups). The sequence
0 → Z → Q → Q / Z → 0
0\to \mathbb Z \to \mathbb Q \to \mathbb Q/\mathbb Z \to 0
0 → Z → Q → Q / Z → 0 is exact, hence yields an injective resolution of Z \mathbb Z Z of length 1 1 1 .
Using it, one computes
H A H A H U G O S H O R T C O D E 300 s 11 H B H B Z ( Z / n Z , Z ) ≅ H 1 ( Hom ( Z / n , [ 0 → Q → Q / Z → 0 ] ) ) .
Ext^1
_{\mathbb Z}(\mathbb Z/n\mathbb Z,\mathbb Z)
\cong H^1\bigl(\operatorname{Hom}(\mathbb Z/n,\, [0\to \mathbb Q\to \mathbb Q/\mathbb Z\to 0])\bigr).
H A H A H U GOS H ORTCO D E 300 s 11 H B H B Z ( Z / n Z , Z ) ≅ H 1 ( Hom ( Z / n , [ 0 → Q → Q / Z → 0 ]) ) . Since Hom ( Z / n , Q ) = 0 \operatorname{Hom}(\mathbb Z/n,\mathbb Q)=0 Hom ( Z / n , Q ) = 0 and Hom ( Z / n , Q / Z ) ≅ ( Q / Z ) [ n ] ≅ Z / n Z \operatorname{Hom}(\mathbb Z/n,\mathbb Q/\mathbb Z)\cong (\mathbb Q/\mathbb Z)[n]\cong \mathbb Z/n\mathbb Z Hom ( Z / n , Q / Z ) ≅ ( Q / Z ) [ n ] ≅ Z / n Z , this gives
H A H A H U G O S H O R T C O D E 300 s 12 H B H B Z ( Z / n , Z ) ≅ Z / n Z .
Ext^1
_{\mathbb Z}(\mathbb Z/n,\mathbb Z)\cong \mathbb Z/n\mathbb Z.
H A H A H U GOS H ORTCO D E 300 s 12 H B H B Z ( Z / n , Z ) ≅ Z / n Z . Example 3: An injective resolution of Z / n Z \mathbb Z/n\mathbb Z Z / n Z and E x t 1 \mathrm{Ext}^1 Ext 1 between cyclic groups Embed Z / n Z \mathbb Z/n\mathbb Z Z / n Z into Q / Z \mathbb Q/\mathbb Z Q / Z as the n n n -torsion subgroup ( Q / Z ) [ n ] (\mathbb Q/\mathbb Z)[n] ( Q / Z ) [ n ] . Multiplication by n n n on Q / Z \mathbb Q/\mathbb Z Q / Z has kernel ( Q / Z ) [ n ] (\mathbb Q/\mathbb Z)[n] ( Q / Z ) [ n ] , so
0 → Z / n Z → Q / Z → × n Q / Z → 0
0\to \mathbb Z/n\mathbb Z \to \mathbb Q/\mathbb Z \xrightarrow{\times n} \mathbb Q/\mathbb Z \to 0
0 → Z / n Z → Q / Z × n Q / Z → 0 is exact, with injective terms, hence an injective resolution of Z / n Z \mathbb Z/n\mathbb Z Z / n Z .
Applying Hom ( Z / m , − ) \operatorname{Hom}(\mathbb Z/m,-) Hom ( Z / m , − ) yields
0 → Hom ( Z / m , Q / Z ) → × n Hom ( Z / m , Q / Z ) → 0 ,
0\to \operatorname{Hom}(\mathbb Z/m,\mathbb Q/\mathbb Z)\xrightarrow{\times n}
\operatorname{Hom}(\mathbb Z/m,\mathbb Q/\mathbb Z)\to 0,
0 → Hom ( Z / m , Q / Z ) × n Hom ( Z / m , Q / Z ) → 0 , and Hom ( Z / m , Q / Z ) ≅ ( Q / Z ) [ m ] ≅ Z / m Z \operatorname{Hom}(\mathbb Z/m,\mathbb Q/\mathbb Z)\cong (\mathbb Q/\mathbb Z)[m]\cong \mathbb Z/m\mathbb Z Hom ( Z / m , Q / Z ) ≅ ( Q / Z ) [ m ] ≅ Z / m Z . Therefore
H A H A H U G O S H O R T C O D E 300 s 13 H B H B Z ( Z / m , Z / n ) ≅ coker ( × n : Z / m → Z / m ) ≅ Z / gcd ( m , n ) Z .
Ext^1
_{\mathbb Z}(\mathbb Z/m,\mathbb Z/n)
\cong \operatorname{coker}(\times n:\mathbb Z/m\to\mathbb Z/m)
\cong \mathbb Z/\gcd(m,n)\mathbb Z.
H A H A H U GOS H ORTCO D E 300 s 13 H B H B Z ( Z / m , Z / n ) ≅ coker ( × n : Z / m → Z / m ) ≅ Z / g cd( m , n ) Z .