Homology module

The nth homology H_n(C) = ker(d_n)/im(d_{n+1}) of a chain complex of modules.
Homology module

Let RR be a and let

dn+1CndnCn1dn1 \cdots \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots

be a of , i.e. dndn+1=0d_n\circ d_{n+1}=0 for all nn.

Definition

The nnth cycles and nnth boundaries of CC_\bullet are the submodules

Zn(C):=ker(dn)Cn,Bn(C):=im(dn+1)Cn. Z_n(C_\bullet) := \ker(d_n)\subseteq C_n, \qquad B_n(C_\bullet) := \operatorname{im}(d_{n+1})\subseteq C_n.

Since dndn+1=0d_n\circ d_{n+1}=0, one has Bn(C)Zn(C)B_n(C_\bullet)\subseteq Z_n(C_\bullet). The nnth homology module is

Hn(C):=Zn(C)/Bn(C). H_n(C_\bullet) := Z_n(C_\bullet) / B_n(C_\bullet).

Equivalently, Hn(C)=0H_n(C_\bullet)=0 for all nn iff CC_\bullet is an .

Basic properties

  • A f:CDf:C_\bullet\to D_\bullet induces RR-linear maps Hn(f):Hn(C)Hn(D)H_n(f):H_n(C_\bullet)\to H_n(D_\bullet) for all nn.
  • chain maps induce the same maps on homology.

Examples

Example 1: Two-term complex over Z\mathbb Z

Consider the chain complex CC_\bullet with C1=ZC_1=\mathbb Z, C0=ZC_0=\mathbb Z, and d1:ZZd_1:\mathbb Z\to\mathbb Z given by multiplication by nn, with all other Ci=0C_i=0. Then

H1(C)=ker(×n)=0,H0(C)=coker(×n)Z/nZ. H_1(C_\bullet)=\ker(\times n)=0,\qquad H_0(C_\bullet)=\operatorname{coker}(\times n)\cong \mathbb Z/n\mathbb Z.

Example 2: Detecting exactness

Let 0AuBvC00\to A\xrightarrow{u} B\xrightarrow{v} C\to 0 be a of RR-modules, viewed as a chain complex

0AuBvC0 0\to A \xrightarrow{u} B \xrightarrow{v} C \to 0

concentrated in degrees 2,1,02,1,0. Then the sequence is exact iff H2=H1=H0=0H_2=H_1=H_0=0, i.e. iff the complex is .

Example 3: Tor\mathrm{Tor} as homology (concrete computation)

Let M=Z/nZM=\mathbb Z/n\mathbb Z. A of MM over Z\mathbb Z is

0Z×nZZ/nZ0. 0\to \mathbb Z \xrightarrow{\times n} \mathbb Z \to \mathbb Z/n\mathbb Z \to 0.

Tensoring with Z/mZ\mathbb Z/m\mathbb Z gives the chain complex

0Z/mZ×nZ/mZ0. 0\to \mathbb Z/m\mathbb Z \xrightarrow{\times n} \mathbb Z/m\mathbb Z \to 0.

Its homology is

H1ker(×n:Z/mZ/m)Z/gcd(m,n)Z, H_1 \cong \ker(\times n:\mathbb Z/m\to \mathbb Z/m)\cong \mathbb Z/\gcd(m,n)\mathbb Z,

so

HAHAHUGOSHORTCODE298s9HBHB1Z(Z/n,Z/m)Z/gcd(m,n)Z. _1^{\mathbb Z}(\mathbb Z/n,\mathbb Z/m)\cong \mathbb Z/\gcd(m,n)\mathbb Z.

(Here we are using the identification H1(P)HAHAHUGOSHORTCODE298s10HBHBH_1(P_\bullet\otimes -)\cong .)