Exactness properties of Hom and tensor

Hom is left exact and tensor is right exact; flatness, projectivity, and injectivity are exactly the conditions that make these functors exact.
Exactness properties of Hom and tensor

Let RR be a ring and consider the functors on RR-modules:

  • HomR(M,)\operatorname{Hom}_R(M,-) (covariant in the second variable),
  • RN-\otimes_R N,
  • HomR(,N)\operatorname{Hom}_R(-,N) (contravariant in the first variable).

Basic exactness statements

Hom is left exact

For any fixed MM, the functor HomR(M,)\operatorname{Hom}_R(M,-) is : from a short exact sequence 0ABC00\to A\to B\to C\to 0 one gets an exact sequence

0HomR(M,A)HomR(M,B)HomR(M,C), 0 \to \operatorname{Hom}_R(M,A)\to \operatorname{Hom}_R(M,B)\to \operatorname{Hom}_R(M,C),

but surjectivity of HomR(M,B)HomR(M,C)\operatorname{Hom}_R(M,B)\to \operatorname{Hom}_R(M,C) can fail in general.

Projectivity criterion. HomR(M,)\operatorname{Hom}_R(M,-) is exact (i.e. also right exact) iff MM is .

Tensor is right exact

For any fixed NN, the functor RN-\otimes_R N is : from ABC0A\to B\to C\to 0 exact one gets

ARNBRNCRN0 A\otimes_R N \to B\otimes_R N \to C\otimes_R N \to 0

exact, but injectivity of ARNBRNA\otimes_R N\to B\otimes_R N can fail.

Flatness criterion. RN-\otimes_R N is exact (i.e. also left exact) iff NN is .

Contravariant Hom is left exact (in the contravariant sense)

For fixed NN, the functor HomR(,N)\operatorname{Hom}_R(-,N) sends short exact sequences 0ABC00\to A\to B\to C\to 0 to exact sequences

0HomR(C,N)HomR(B,N)HomR(A,N), 0 \to \operatorname{Hom}_R(C,N)\to \operatorname{Hom}_R(B,N)\to \operatorname{Hom}_R(A,N),

again with possible failure of surjectivity on the right.

Injectivity criterion. HomR(,N)\operatorname{Hom}_R(-,N) is exact (i.e. also right exact in this contravariant direction) iff NN is .

Because Hom and tensor are only one-sided exact in general, their derived functors measure the obstruction:

Examples

Example 1 (tensor is not left exact over Z\mathbb Z)

In Ab\mathbf{Ab}, take the injection 0ZnZ0\to \mathbb Z \xrightarrow{\cdot n} \mathbb Z. Tensor with Z/n\mathbb Z/n:

ZZ/nnZZ/n \mathbb Z\otimes \mathbb Z/n \xrightarrow{\cdot n} \mathbb Z\otimes \mathbb Z/n

becomes

Z/n0Z/n, \mathbb Z/n \xrightarrow{0} \mathbb Z/n,

which is not injective. The “missing” left exactness is measured by

Tor1Z(Z/n,Z/n)Z/n \operatorname{Tor}_1^\mathbb Z(\mathbb Z/n,\mathbb Z/n)\cong \mathbb Z/n

(see ).

Example 2 (flat module: Q\mathbb Q over Z\mathbb Z)

The Z\mathbb Z-module Q\mathbb Q is flat (localization of Z\mathbb Z). Hence tensoring any short exact sequence of abelian groups with Q\mathbb Q preserves exactness. In particular,

Tor1Z(Q,A)=0 \operatorname{Tor}_1^\mathbb Z(\mathbb Q, A)=0

for every abelian group AA.

Example 3 (Hom is not right exact unless the source is projective)

Consider the short exact sequence

0ZnZZ/n0. 0\to \mathbb Z \xrightarrow{\cdot n} \mathbb Z \to \mathbb Z/n\to 0.

Apply HomZ(Z/n,)\operatorname{Hom}_\mathbb Z(\mathbb Z/n,-). The resulting map

Hom(Z/n,Z)Hom(Z/n,Z/n) \operatorname{Hom}(\mathbb Z/n,\mathbb Z)\to \operatorname{Hom}(\mathbb Z/n,\mathbb Z/n)

fails to be surjective (indeed Hom(Z/n,Z)=0\operatorname{Hom}(\mathbb Z/n,\mathbb Z)=0, while Hom(Z/n,Z/n)Z/n\operatorname{Hom}(\mathbb Z/n,\mathbb Z/n)\cong \mathbb Z/n). The obstruction is exactly

ExtZ1(Z/n,Z)Z/n, \operatorname{Ext}^1_\mathbb Z(\mathbb Z/n,\mathbb Z)\cong \mathbb Z/n,

illustrating that Z/n\mathbb Z/n is not projective over Z\mathbb Z (see ).