Ext¹ classifies extensions

Ext¹_R(C,A) is naturally identified with equivalence classes of short exact sequences 0→A→E→C→0.
Ext¹ classifies extensions

Let RR be a ring and A,CA,C left RR-modules.

Statement

An extension of CC by AA is a

0AiEpC0. 0 \longrightarrow A \xrightarrow{i} E \xrightarrow{p} C \longrightarrow 0.

Two extensions

0AiEpC0,0AiEpC0 0\to A \xrightarrow{i} E \xrightarrow{p} C \to 0, \qquad 0\to A \xrightarrow{i'} E' \xrightarrow{p'} C \to 0

are equivalent if there exists an RR-module isomorphism ϕ:EE\phi:E\to E' such that ϕi=i\phi\circ i=i' and pϕ=pp' \circ \phi = p (i.e. a commutative diagram with identity on AA and CC).

Let Ext(C,A)\mathrm{Ext}(C,A) denote the set of equivalence classes of extensions of CC by AA.

Theorem (classification by Ext1^1). There is a natural bijection

ExtR1(C,A)  Ext(C,A), \mathrm{Ext}^1_R(C,A)\ \cong\ \mathrm{Ext}(C,A),

where ExtR1(C,A)\mathrm{Ext}^1_R(C,A) is the degree-1 group (the first right derived functor of ; see ).

Moreover:

  • The zero element of ExtR1(C,A)\mathrm{Ext}^1_R(C,A) corresponds to the split extension EACE\cong A\oplus C.
  • The abelian group structure on ExtR1(C,A)\mathrm{Ext}^1_R(C,A) corresponds to the Baer sum of extensions (constructed via pullback/pushout in the category of modules).

Cross-links: , , .

Examples

Example 1: ExtZ1(Z/nZ,A)A/nA\mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n\mathbb Z, A)\cong A/nA

Use the projective resolution from :

0ZnZZ/nZ0. 0\to \mathbb Z \xrightarrow{\cdot n} \mathbb Z \to \mathbb Z/n\mathbb Z \to 0.

Apply HomZ(,A)\mathrm{Hom}_{\mathbb Z}(-,A) to get

0Hom(Z/nZ,A)AnAExtZ1(Z/nZ,A)0, 0 \to \mathrm{Hom}(\mathbb Z/n\mathbb Z,A) \to A \xrightarrow{\cdot n} A \to \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n\mathbb Z,A) \to 0,

so

ExtZ1(Z/nZ,A)  coker(AnA) = A/nA. \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n\mathbb Z,A)\ \cong\ \mathrm{coker}(A \xrightarrow{\cdot n} A)\ =\ A/nA.

Interpretation. Elements of A/nAA/nA classify (up to the above equivalence) short exact sequences

0AEZ/nZ0. 0\to A \to E \to \mathbb Z/n\mathbb Z \to 0.

The class 0A/nA0\in A/nA corresponds to the split extension EAZ/nZE\cong A\oplus \mathbb Z/n\mathbb Z.

Example 2: Extk[x]1(k,k)k\mathrm{Ext}^1_{k[x]}(k,k)\cong k and the module k[x]/(x2)k[x]/(x^2)

Let R=k[x]R=k[x] and kR/(x)k\cong R/(x). Using the free resolution

0RxRk0, 0\to R \xrightarrow{\cdot x} R \to k \to 0,

applying HomR(,k)\mathrm{Hom}_R(-,k) yields a map k0kk \xrightarrow{0} k (since xx acts as 00 on kk), hence

Extk[x]1(k,k)k. \mathrm{Ext}^1_{k[x]}(k,k)\cong k.

A concrete non-split extension representing a nonzero class is

0(x)/(x2)k[x]/(x2)k[x]/(x)0, 0 \longrightarrow (x)/(x^2) \longrightarrow k[x]/(x^2) \longrightarrow k[x]/(x) \longrightarrow 0,

where (x)/(x2)k(x)/(x^2)\cong k and k[x]/(x)kk[x]/(x)\cong k as k[x]k[x]-modules. The split class corresponds to kkk\oplus k (with xx acting by 00 on each summand).

Example 3: Over a field, every extension splits

If R=kR=k is a field, all kk-modules are projective (and injective), so

Extk1(V,W)=0 \mathrm{Ext}^1_k(V,W)=0

for all vector spaces V,WV,W. Equivalently, every short exact sequence 0WEV00\to W\to E\to V\to 0 of vector spaces splits (choose a linear section VEV\to E).