Ext and Tor as derived functors

Ext and Tor are the right/left derived functors of Hom and tensor, computed via injective/projective (or flat) resolutions.
Ext and Tor as derived functors

Let RR be a ring and M,NM,N RR-modules. The functors

  • NHomR(M,N)N \mapsto \operatorname{Hom}_R(M,N) (covariant in NN) are ,
  • MMRNM \mapsto M\otimes_R N are .

Their failure to be exact is measured by derived functors, giving rise to and .

Definitions (via resolutions)

Ext as a right derived functor

Fix MM. Choose an 0NI0I10\to N\to I^0\to I^1\to \cdots. Apply HomR(M,)\operatorname{Hom}_R(M,-) degreewise to get a cochain complex HomR(M,I)\operatorname{Hom}_R(M,I^\bullet). Define

ExtRn(M,N):=Hn(HomR(M,I)). \operatorname{Ext}^n_R(M,N) := H^n(\operatorname{Hom}_R(M,I^\bullet)).

Equivalently (often more computationally), choose a P1P0M0 \cdots \to P_1\to P_0\to M\to 0 and set

ExtRn(M,N):=Hn(HomR(P,N)). \operatorname{Ext}^n_R(M,N) := H^n(\operatorname{Hom}_R(P_\bullet,N)).

These agree and are well-defined up to canonical isomorphism because projective/injective resolutions exist (see and ).

Tor as a left derived functor

Fix NN. Choose a projective (or flat) resolution P1P0M0 \cdots \to P_1\to P_0\to M\to 0. Apply RN-\otimes_R N to get a chain complex PRNP_\bullet\otimes_R N. Define

TornR(M,N):=Hn(PRN). \operatorname{Tor}^R_n(M,N) := H_n(P_\bullet\otimes_R N).

Functorial consequences

Examples

Example 1 (Tor over Z\mathbb Z: Tor1Z(Z/n,Z/m)\operatorname{Tor}_1^\mathbb Z(\mathbb Z/n,\mathbb Z/m))

Use the standard projective resolution

0ZnZZ/n0. 0\to \mathbb Z \xrightarrow{\cdot n} \mathbb Z \to \mathbb Z/n\to 0.

Tensor with Z/m\mathbb Z/m to get

0Z/mnZ/m(Z/n)(Z/m)0. 0\to \mathbb Z/m \xrightarrow{\cdot n} \mathbb Z/m \to (\mathbb Z/n)\otimes(\mathbb Z/m)\to 0.

Then

Tor1Z(Z/n,Z/m)=ker(n:Z/mZ/m)Z/gcd(n,m), \operatorname{Tor}_1^\mathbb Z(\mathbb Z/n,\mathbb Z/m)=\ker(\cdot n:\mathbb Z/m\to \mathbb Z/m)\cong \mathbb Z/\gcd(n,m),

and Tori=0\operatorname{Tor}_i=0 for i2i\ge 2 because the resolution has length 11.

Example 2 (Ext over Z\mathbb Z: ExtZ1(Z/n,Z/m)\operatorname{Ext}^1_\mathbb Z(\mathbb Z/n,\mathbb Z/m))

Apply HomZ(,Z/m)\operatorname{Hom}_\mathbb Z(-,\mathbb Z/m) to the same resolution:

0ZnZZ/n0 0\to \mathbb Z \xrightarrow{\cdot n} \mathbb Z \to \mathbb Z/n\to 0

to obtain

0Hom(Z,Z/m)nHom(Z,Z/m)Ext1(Z/n,Z/m)0. 0\to \operatorname{Hom}(\mathbb Z,\mathbb Z/m)\xrightarrow{\cdot n}\operatorname{Hom}(\mathbb Z,\mathbb Z/m)\to \operatorname{Ext}^1(\mathbb Z/n,\mathbb Z/m)\to 0.

Since Hom(Z,Z/m)Z/m\operatorname{Hom}(\mathbb Z,\mathbb Z/m)\cong \mathbb Z/m, we get

ExtZ1(Z/n,Z/m)(Z/m)/n(Z/m)Z/gcd(n,m), \operatorname{Ext}^1_\mathbb Z(\mathbb Z/n,\mathbb Z/m)\cong (\mathbb Z/m)/n(\mathbb Z/m)\cong \mathbb Z/\gcd(n,m),

and Exti=0\operatorname{Ext}^i=0 for i2i\ge 2.

Example 3 (a quick vanishing test: projective/flat inputs)

If MM is , then ExtRn(M,N)=0\operatorname{Ext}^n_R(M,N)=0 for all n1n\ge 1 and all NN. If NN is , then TornR(M,N)=0\operatorname{Tor}^R_n(M,N)=0 for all n1n\ge 1 and all MM. Both statements follow because you can take a resolution of length 00 (exactness of the relevant functor), reflecting the general principle that derived functors measure failure of exactness (see ).