Ext

The right derived functors of Hom; measures extension classes and failure of exactness of Hom.
Ext

Let RR be a and let M,NM,N be (left) .

Definition (via a projective resolution)

Choose a PMP_\bullet \to M, i.e.

P2d2P1d1P0M0 \cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to M \to 0

with each PiP_i projective. Apply the functor to obtain a

0HomR(P0,N)d1HomR(P1,N)d2HomR(P2,N). 0 \to \mathrm{Hom}_R(P_0,N) \xrightarrow{d_1^*} \mathrm{Hom}_R(P_1,N) \xrightarrow{d_2^*} \mathrm{Hom}_R(P_2,N) \to \cdots.

Define

ExtRn(M,N)  :=  Hn ⁣(HomR(P,N)), \mathrm{Ext}^n_R(M,N) \;:=\; H^n\!\big(\mathrm{Hom}_R(P_\bullet,N)\big),

where Hn()H^n(-) denotes .

This construction is independent of the chosen resolution (up to canonical isomorphism), and is functorial: ExtRn(,N)\mathrm{Ext}^n_R(-,N) is contravariant in the first variable and ExtRn(M,)\mathrm{Ext}^n_R(M,-) is covariant in the second.

Equivalent definition (via an injective resolution)

If R-ModR\text{-Mod} has enough injectives, choose an NIN \to I^\bullet and set

ExtRn(M,N)  :=  Hn ⁣(HomR(M,I)). \mathrm{Ext}^n_R(M,N) \;:=\; H^n\!\big(\mathrm{Hom}_R(M,I^\bullet)\big).

In either approach, ExtR0(M,N)HomR(M,N)\mathrm{Ext}^0_R(M,N)\cong \mathrm{Hom}_R(M,N).

Conceptual meaning

Examples

Example 1: Vector spaces over a field

Let kk be a field and V,WV,W be kk-vector spaces. Every kk-module is free (hence projective and injective), so any projective resolution can be taken to be length 00. Therefore,

Extkn(V,W)=0(n>0),Extk0(V,W)=Homk(V,W). \mathrm{Ext}^n_k(V,W)=0 \quad (n>0), \qquad \mathrm{Ext}^0_k(V,W)=\mathrm{Hom}_k(V,W).

Example 2: ExtZ1(Z/n,A)A/nA\mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n, A)\cong A/nA

Take the standard projective resolution of Z/n\mathbb Z/n as a Z\mathbb Z-module:

0Z×nZZ/n0. 0 \to \mathbb Z \xrightarrow{\times n} \mathbb Z \to \mathbb Z/n \to 0.

Apply HomZ(,A)\mathrm{Hom}_{\mathbb Z}(-,A):

0Hom(Z/n,A)Hom(Z,A)×nHom(Z,A)Ext1(Z/n,A)0. 0 \to \mathrm{Hom}(\mathbb Z/n,A) \to \mathrm{Hom}(\mathbb Z,A)\xrightarrow{\times n} \mathrm{Hom}(\mathbb Z,A)\to \mathrm{Ext}^1(\mathbb Z/n,A)\to 0.

Using Hom(Z,A)A\mathrm{Hom}(\mathbb Z,A)\cong A, the last map shows

ExtZ1(Z/n,A)    coker(A×nA)    A/nA. \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,A)\;\cong\; \mathrm{coker}(A \xrightarrow{\times n} A)\;\cong\; A/nA.

In particular, ExtZ1(Z/n,Z)Z/n\mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,\mathbb Z)\cong \mathbb Z/n.

Example 3: ExtZ1(Z/n,Z/m)Z/gcd(n,m)\mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,\mathbb Z/m)\cong \mathbb Z/\gcd(n,m)

From Example 2 with A=Z/mA=\mathbb Z/m,

ExtZ1(Z/n,Z/m)(Z/m)/n(Z/m)Z/gcd(n,m). \mathrm{Ext}^1_{\mathbb Z}(\mathbb Z/n,\mathbb Z/m)\cong (\mathbb Z/m)/n(\mathbb Z/m)\cong \mathbb Z/\gcd(n,m).

(For these cyclic Z\mathbb Z-modules, ExtZi(Z/n,)=0\mathrm{Ext}^i_{\mathbb Z}(\mathbb Z/n,-)=0 for i2i\ge 2 because Z/n\mathbb Z/n has projective dimension 11.)