Trace and norm in towers

In a tower K⊂E⊂L of finite extensions, trace and norm compose multiplicatively/additively.
Trace and norm in towers

Let KELK\subseteq E\subseteq L be a of finite extensions. For xLx\in L, write

TrL/K(x)K,NL/K(x)K \mathrm{Tr}_{L/K}(x)\in K,\qquad N_{L/K}(x)\in K

for the and . Then trace and norm are compatible with towers:

Theorem (tower formulas).

TrL/K=TrE/KTrL/E,NL/K=NE/KNL/E. \mathrm{Tr}_{L/K}=\mathrm{Tr}_{E/K}\circ \mathrm{Tr}_{L/E},\qquad N_{L/K}=N_{E/K}\circ N_{L/E}.

Equivalently, for all xLx\in L,

TrL/K(x)=TrE/K ⁣(TrL/E(x)),NL/K(x)=NE/K ⁣(NL/E(x)). \mathrm{Tr}_{L/K}(x)=\mathrm{Tr}_{E/K}\!\big(\mathrm{Tr}_{L/E}(x)\big),\quad N_{L/K}(x)=N_{E/K}\!\big(N_{L/E}(x)\big).

These identities are compatible with degree calculations from the and reflect the fact that trace and norm can be defined as the trace/determinant of the KK-linear map “multiplication by xx” on LL.

Examples

  1. A quadratic subextension.
    Take K=QK=\mathbb{Q}, E=Q(2)E=\mathbb{Q}(\sqrt2), L=E(3)=Q(2,3)L=E(\sqrt3)=\mathbb{Q}(\sqrt2,\sqrt3). For y=a+b2Ey=a+b\sqrt2\in E, TrE/K(y)=2a\mathrm{Tr}_{E/K}(y)=2a and NE/K(y)=a22b2N_{E/K}(y)=a^2-2b^2. The tower formulas then compute TrL/K\mathrm{Tr}_{L/K} and NL/KN_{L/K} by first taking TrL/E\mathrm{Tr}_{L/E}, NL/EN_{L/E} and then applying the quadratic formulas above.

  2. Cyclotomic example.
    With K=QE=Q(ζ3)L=Q(ζ9)K=\mathbb{Q}\subseteq E=\mathbb{Q}(\zeta_3)\subseteq L=\mathbb{Q}(\zeta_9), the tower identities express TrL/Q\mathrm{Tr}_{L/\mathbb{Q}} and NL/QN_{L/\mathbb{Q}} in terms of intermediate traces/norms, often simplifying computations because Gal(L/E)\mathrm{Gal}(L/E) is smaller than Gal(L/Q)\mathrm{Gal}(L/\mathbb{Q}).

  3. Finite fields.
    For FpFpmFpn\mathbb{F}_p \subseteq \mathbb{F}_{p^m}\subseteq \mathbb{F}_{p^n} with mnm\mid n, the trace and norm are given by explicit Frobenius sums/products, and the tower formulas reflect the composition of these Frobenius patterns (see ).