Field norm

For a finite extension L/K, the norm N_{L/K}(α) is the determinant of multiplication-by-α as a K-linear map.
Field norm

Let L/KL/K be a finite of degree n=[L:K]n=[L:K]. For αL\alpha\in L, consider the KK-linear map mα:LLm_\alpha:L\to L, xαxx\mapsto \alpha x. The (field) norm of α\alpha from LL to KK is

NL/K(α):=det(mα)K. \mathrm{N}_{L/K}(\alpha) := \det(m_\alpha)\in K.

If L/KL/K is separable (see ) and Ω\Omega contains LL, then

NL/K(α)=σσ(α), \mathrm{N}_{L/K}(\alpha)=\prod_{\sigma} \sigma(\alpha),

where the product runs over all KK- σ:LΩ\sigma:L\hookrightarrow \Omega. The norm is multiplicative, NL/K(αβ)=NL/K(α)NL/K(β)\mathrm{N}_{L/K}(\alpha\beta)=\mathrm{N}_{L/K}(\alpha)\mathrm{N}_{L/K}(\beta), and satisfies the tower property in for a KMLK\subseteq M\subseteq L.

Examples

  1. Quadratic extension. Let L=K(d)L=K(\sqrt{d}) with char(K)2\mathrm{char}(K)\neq 2. For α=a+bd\alpha=a+b\sqrt{d},

    NL/K(α)=(a+bd)(abd)=a2b2d. \mathrm{N}_{L/K}(\alpha)=(a+b\sqrt{d})(a-b\sqrt{d})=a^2-b^2d.
  2. Norm via minimal polynomial. If L=K(α)L=K(\alpha) is a and the minimal polynomial of α\alpha over KK is mα(x)=xn+cn1xn1++c0m_\alpha(x)=x^n+c_{n-1}x^{n-1}+\cdots+c_0, then

    NL/K(α)=(1)nc0. \mathrm{N}_{L/K}(\alpha)=(-1)^n c_0.

    (Here c0c_0 is the constant term.)

  3. Finite fields. For L=FqnL=\mathbb{F}_{q^n} over K=FqK=\mathbb{F}_q,

    NL/K(α)=ααqαq2αqn1=α(qn1)/(q1). \mathrm{N}_{L/K}(\alpha)=\alpha\cdot \alpha^{q}\cdot \alpha^{q^2}\cdots \alpha^{q^{n-1}}=\alpha^{(q^n-1)/(q-1)}.

    This is compatible with the cyclic structure of the multiplicative group (see ).