Degree Equals Galois Group Order

For a finite Galois extension L/K, the degree [L:K] equals the size of Gal(L/K).
Degree Equals Galois Group Order

Let L/KL/K be a finite . Its is

Gal(L/K)={σ:LL a field automorphism with σK=idK}, \mathrm{Gal}(L/K)=\{\sigma:L\to L \text{ a field automorphism with }\sigma|_K=\mathrm{id}_K\},

i.e. the group of KK- of LL.

Theorem (degree = group order for finite Galois extensions).
If L/KL/K is a finite , then

Gal(L/K)=[L:K], |\mathrm{Gal}(L/K)| = [L:K],

where [L:K][L:K] is the .

A useful companion fact is the inequality valid for any finite extension:

AutK(L)[L:K], |\mathrm{Aut}_K(L)| \le [L:K],

with equality if and only if L/KL/K is Galois (equivalently: finite, , and ; see ).

Examples

  1. Quadratic extensions.
    For L=Q(2)L=\mathbb{Q}(\sqrt2) over K=QK=\mathbb{Q}, we have [L:K]=2[L:K]=2. The two KK-automorphisms are

    22and22, \sqrt2\mapsto \sqrt2 \quad\text{and}\quad \sqrt2\mapsto -\sqrt2,

    so Gal(L/K)=2=[L:K]|\mathrm{Gal}(L/K)|=2=[L:K].

  2. A Galois splitting field of degree 6.
    Let LL be the over Q\mathbb{Q} of x32x^3-2. Then L=Q(23,ζ3)L=\mathbb{Q}(\sqrt[3]{2},\zeta_3) is finite Galois over Q\mathbb{Q}, and one finds

    [L:Q]=6andGal(L/Q)S3, [L:\mathbb{Q}]=6 \quad\text{and}\quad \mathrm{Gal}(L/\mathbb{Q})\cong S_3,

    so Gal(L/Q)=6=[L:Q]|\mathrm{Gal}(L/\mathbb{Q})|=6=[L:\mathbb{Q}].

  3. Contrast: a non-Galois finite extension.
    The simple extension L=Q(23)L=\mathbb{Q}(\sqrt[3]{2}) has [L:Q]=3[L:\mathbb{Q}]=3, but it is not (it does not contain the other complex cube roots), so it is not Galois. In fact, any Q\mathbb{Q}-automorphism must send 23\sqrt[3]{2} to another root of its minimal polynomial; only the real root lies in LL, so AutQ(L)\mathrm{Aut}_{\mathbb{Q}}(L) is trivial and AutQ(L)=1<3|\mathrm{Aut}_{\mathbb{Q}}(L)|=1<3.