Galois Correspondence

For a finite Galois extension, intermediate fields correspond bijectively to subgroups of the Galois group.
Galois Correspondence

Let L/KL/K be a finite with G=Gal(L/K)G = \mathrm{Gal}(L/K).

Let I(L/K)\mathcal{I}(L/K) denote the set of EE with KELK\subseteq E\subseteq L, and let Sub(G)\mathrm{Sub}(G) be the set of subgroups of GG.

For EI(L/K)E\in\mathcal{I}(L/K) define

Φ(E)=Gal(L/E)={σG:σE=idE}, \Phi(E) = \mathrm{Gal}(L/E)=\{\sigma\in G:\sigma|_E=\mathrm{id}_E\},

and for a subgroup HGH\le G define its

Ψ(H)=LH={xL:σ(x)=x for all σH}. \Psi(H)=L^H=\{x\in L:\sigma(x)=x\ \text{for all }\sigma\in H\}.

Theorem (Galois correspondence).
The assignments Φ\Phi and Ψ\Psi are inverse bijections

I(L/K)  Sub(G), \mathcal{I}(L/K)\ \longleftrightarrow\ \mathrm{Sub}(G),

and they reverse inclusions: if E1E2E_1\subseteq E_2 then Gal(L/E2)Gal(L/E1)\mathrm{Gal}(L/E_2)\le \mathrm{Gal}(L/E_1), and if H1H2H_1\le H_2 then LH2LH1L^{H_2}\subseteq L^{H_1}.

Moreover, for HGH\le G one has the degree/index formulas

[L:LH]=H,[LH:K]=[G:H], [L:L^H]=|H|,\qquad [L^H:K]=[G:H],

which combine with the .

Finally, for EI(L/K)E\in\mathcal{I}(L/K) with corresponding subgroup H=Gal(L/E)H=\mathrm{Gal}(L/E), the subextension E/KE/K is (equivalently, Galois) if and only if HH is a normal subgroup of GG, and then restriction induces an isomorphism

Gal(E/K)  G/H. \mathrm{Gal}(E/K)\ \cong\ G/H.

This correspondence is one standard formulation of the .

Examples

  1. A biquadratic extension with Klein four group.
    Let L=Q(2,3)L=\mathbb{Q}(\sqrt2,\sqrt3) and K=QK=\mathbb{Q}. This is the of (x22)(x23)(x^2-2)(x^2-3), hence a finite Galois extension. The group G=Gal(L/Q)G=\mathrm{Gal}(L/\mathbb{Q}) has four elements, determined by independent sign changes of 2\sqrt2 and 3\sqrt3:

    • τ2(2)=2, τ2(3)=3\tau_2(\sqrt2)=-\sqrt2,\ \tau_2(\sqrt3)=\sqrt3,
    • τ3(2)=2, τ3(3)=3\tau_3(\sqrt2)=\sqrt2,\ \tau_3(\sqrt3)=-\sqrt3,
    • τ6=τ2τ3\tau_6=\tau_2\tau_3.

    The three subgroups of order 22 correspond to the three quadratic intermediate fields:

    Lτ2=Q(3),Lτ3=Q(2),Lτ6=Q(6). L^{\langle\tau_2\rangle}=\mathbb{Q}(\sqrt3),\quad L^{\langle\tau_3\rangle}=\mathbb{Q}(\sqrt2),\quad L^{\langle\tau_6\rangle}=\mathbb{Q}(\sqrt6).

    The full group fixes Q\mathbb{Q}, and the trivial subgroup fixes LL.

  2. A cyclotomic example.
    Let L=Q(ζ5)L=\mathbb{Q}(\zeta_5) (a ) and K=QK=\mathbb{Q}. Then G(Z/5Z)×G\cong(\mathbb{Z}/5\mathbb{Z})^\times is cyclic of order 44. There is exactly one subgroup of order 22, hence exactly one intermediate field EE with [E:Q]=2[E:\mathbb{Q}]=2, namely the maximal real subfield

    E=Q(ζ5+ζ51)=Q(5). E=\mathbb{Q}(\zeta_5+\zeta_5^{-1})=\mathbb{Q}(\sqrt5).
  3. Finite fields.
    For L=FpnL=\mathbb{F}_{p^n} and K=FpK=\mathbb{F}_p, the extension is Galois with cyclic group (see ). Subgroups of a cyclic group correspond to divisors of nn, so the intermediate fields are exactly

    Fpd(dn), \mathbb{F}_{p^d}\quad (d\mid n),

    with Fpd\mathbb{F}_{p^d} corresponding to the unique subgroup of GG of index dd.