Fixed field

The subfield consisting of elements fixed by every automorphism in a given group.
Fixed field

Let EE be a , and let GG be a set (typically a subgroup) of field automorphisms of EE.

Definition (fixed field). The fixed field of GG is

EG  =  {aEσ(a)=a for every σG}. E^G \;=\; \{\, a\in E \mid \sigma(a)=a \text{ for every } \sigma\in G \,\}.

Then EGE^G is a subfield of EE. Moreover, when GG contains the identity (as it does for any subgroup), EGEE^G\subseteq E is an for the extension E/EGE/E^G.

Fixed fields are central to Galois theory: if E/FE/F is a , then the Gal(E/F)\mathrm{Gal}(E/F) has fixed field exactly FF, and subgroups HGal(E/F)H\le \mathrm{Gal}(E/F) correspond to intermediate fields via the . For finite groups of automorphisms, describes [E:EG][E:E^G] and identifies Gal(E/EG)\mathrm{Gal}(E/E^G) with GG.

Examples.

  1. Let E=Q(2)E=\mathbb{Q}(\sqrt2) and G=Gal(E/Q)={1,σ}G=\mathrm{Gal}(E/\mathbb{Q})=\{1,\sigma\} with σ(2)=2\sigma(\sqrt2)=-\sqrt2. Then EG=QE^G=\mathbb{Q}. At the other extreme, if G={1}G=\{1\} then EG=EE^G=E.
  2. Let E=CE=\mathbb{C} and let G={1,conj}G=\{1,\text{conj}\}, where conj(a+bi)=abi\text{conj}(a+bi)=a-bi. Then EG=RE^G=\mathbb{R}.
  3. Let E=FpnE=\mathbb{F}_{p^n} and let Frob(x)=xp\mathrm{Frob}(x)=x^p. If G=FrobdG=\langle \mathrm{Frob}^d\rangle (so dnd\mid n), then the fixed field is EG=FpdE^G=\mathbb{F}_{p^d}.