Discriminant (of a field basis)

For a finite extension L/K, the discriminant of a K-basis is det(Tr_{L/K}(b_i b_j)).
Discriminant (of a field basis)

Let L/KL/K be a finite of degree nn, and let TrL/K\mathrm{Tr}_{L/K} be the . For an nn-tuple b=(b1,,bn)\mathbf{b}=(b_1,\dots,b_n) in LL that is a KK-basis of LL, the discriminant of b\mathbf{b} (relative to L/KL/K) is

discL/K(b)  :=  det ⁣(TrL/K(bibj))1i,jnK. \mathrm{disc}_{L/K}(\mathbf{b}) \;:=\; \det\!\big(\mathrm{Tr}_{L/K}(b_i b_j)\big)_{1\le i,j\le n}\in K.

If L/KL/K is separable (see ), then discL/K(b)0\mathrm{disc}_{L/K}(\mathbf{b})\neq 0, and one can also express it using KK- σ1,,σn:LΩ\sigma_1,\dots,\sigma_n:L\hookrightarrow \Omega into a common overfield Ω\Omega:

discL/K(b)  =  det(σi(bj))i,j2. \mathrm{disc}_{L/K}(\mathbf{b}) \;=\; \det(\sigma_i(b_j))_{i,j}^2.

This shows how the discriminant measures “linear independence of conjugates” and links naturally to separability (compare ).

Examples

  1. Quadratic basis. Let L=K(d)L=K(\sqrt{d}) with char(K)2\mathrm{char}(K)\neq 2 and basis (1,d)(1,\sqrt{d}). Using TrL/K(1)=2\mathrm{Tr}_{L/K}(1)=2, TrL/K(d)=0\mathrm{Tr}_{L/K}(\sqrt{d})=0, TrL/K(d)=2d\mathrm{Tr}_{L/K}(d)=2d,

    discL/K(1,d)=det(2002d)=4d. \mathrm{disc}_{L/K}(1,\sqrt{d})=\det\begin{pmatrix}2&0\\0&2d\end{pmatrix}=4d.
  2. Power basis in a simple extension. If L=K(α)L=K(\alpha) with [L:K]=n[L:K]=n, the “power basis” (1,α,,αn1)(1,\alpha,\dots,\alpha^{n-1}) has discriminant discL/K(1,α,,αn1)=det(TrL/K(αi+j))0i,jn1\mathrm{disc}_{L/K}(1,\alpha,\dots,\alpha^{n-1})=\det(\mathrm{Tr}_{L/K}(\alpha^{i+j}))_{0\le i,j\le n-1}, which can be computed from the minimal polynomial of α\alpha in concrete cases.

  3. Finite fields: always zero over the prime field when inseparable is absent? For L=FqnL=\mathbb{F}_{q^n} over K=FqK=\mathbb{F}_q, the extension is separable because finite fields are , so discriminants of KK-bases are nonzero. For example, if n=2n=2 and L=K(α)L=K(\alpha) with α2αβ=0\alpha^2-\alpha-\beta=0 irreducible over KK, then for the basis (1,α)(1,\alpha),

    discL/K(1,α)=det(Tr(1)Tr(α)Tr(α)Tr(α2))K×. \mathrm{disc}_{L/K}(1,\alpha)=\det\begin{pmatrix} \mathrm{Tr}(1) & \mathrm{Tr}(\alpha)\\ \mathrm{Tr}(\alpha) & \mathrm{Tr}(\alpha^2) \end{pmatrix}\in K^\times.