Dedekind independence lemma

Distinct K-embeddings of a field are linearly independent as functions.
Dedekind independence lemma

Let KLK \subseteq L be a , and let Ω\Omega be a field containing (identified copies of) the images of LL under the embeddings below. If

σ1,,σn:LΩ \sigma_1,\dots,\sigma_n : L \hookrightarrow \Omega

are distinct that fix KK, then they are linearly independent over Ω\Omega when viewed as Ω\Omega-valued on LL. Concretely:

If a1,,anΩa_1,\dots,a_n \in \Omega satisfy

>a1σ1(x)++anσn(x)=0for all xL,> > a_1\sigma_1(x)+\cdots+a_n\sigma_n(x)=0 \quad \text{for all } x\in L, >

then a1==an=0a_1=\cdots=a_n=0.

Equivalently, the Ω\Omega-vector space ΩL\Omega^L of all functions LΩL\to\Omega contains {σ1,,σn}\{\sigma_1,\dots,\sigma_n\} as a linearly independent set.

This lemma is frequently applied with Ω=L\Omega=L and σi\sigma_i ranging over a subgroup of the (or more generally the group) of LL.

Examples

  1. Two embeddings of a quadratic extension.
    In L=Q(2)CL=\mathbb{Q}(\sqrt2)\subset \mathbb{C}, there are two Q\mathbb{Q}-embeddings into C\mathbb{C}: the identity id\mathrm{id} and conjugation τ(2)=2\tau(\sqrt2)=-\sqrt2. If aid+bτ=0a\,\mathrm{id}+b\,\tau=0 as functions, then evaluating at 11 gives a+b=0a+b=0, and at 2\sqrt2 gives a2b2=0a\sqrt2-b\sqrt2=0, hence a=b=0a=b=0.

  2. Cyclotomic embeddings.
    For L=Q(ζn)L=\mathbb{Q}(\zeta_n) with ζn\zeta_n a , the distinct embeddings σk(ζn)=ζnk\sigma_k(\zeta_n)=\zeta_n^k (for gcd(k,n)=1\gcd(k,n)=1) are linearly independent as C\mathbb{C}-valued functions on LL.

  3. Finite-field Frobenius powers.
    In a finite field L=FpmL=\mathbb{F}_{p^m}, the maps xxpix\mapsto x^{p^i} are distinct for 0i<m0\le i<m (see ). Dedekind independence implies no nontrivial Fpm\mathbb{F}_{p^m}-linear combination of these maps vanishes identically.