Cyclotomic extension

An extension obtained by adjoining a primitive n-th root of unity, e.g. Q(ζ_n)/Q.
Cyclotomic extension

Let KK be a and fix n1n\ge 1. Choose a ζn\zeta_n in an of KK (when it exists). The cyclotomic extension of level nn is the

K(ζn)/K. K(\zeta_n)/K.

Assume char(K)n\mathrm{char}(K)\nmid n. Then xn1x^n-1 has distinct roots, so K(ζn)/KK(\zeta_n)/K is . Moreover, K(ζn)K(\zeta_n) contains all nn-th roots of unity (since every root is ζnk\zeta_n^k), so it is the of xn1x^n-1 over KK. Hence K(ζn)/KK(\zeta_n)/K is and therefore (see ).

In the classical case K=QK=\mathbb{Q}, the minimal polynomial of ζn\zeta_n is the Φn(x)\Phi_n(x), so

[Q(ζn):Q]=deg(Φn)=φ(n). [\mathbb{Q}(\zeta_n):\mathbb{Q}] = \deg(\Phi_n)=\varphi(n).

The Gal(Q(ζn)/Q)\mathrm{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) identifies with (Z/nZ)×(\mathbb{Z}/n\mathbb{Z})^\times by sending an automorphism σ\sigma to the unique class amodna\bmod n with σ(ζn)=ζna\sigma(\zeta_n)=\zeta_n^{\,a}.

Examples

  1. n=3n=3. Q(ζ3)=Q(e2πi/3)=Q ⁣(1+32)=Q(3)\mathbb{Q}(\zeta_3)=\mathbb{Q}(e^{2\pi i/3})=\mathbb{Q}\!\left(\frac{-1+\sqrt{-3}}{2}\right)=\mathbb{Q}(\sqrt{-3}), a quadratic extension of Q\mathbb{Q}.

  2. n=4n=4. Q(ζ4)=Q(i)\mathbb{Q}(\zeta_4)=\mathbb{Q}(i), and Gal(Q(i)/Q)C2\mathrm{Gal}(\mathbb{Q}(i)/\mathbb{Q})\cong C_2 generated by complex conjugation (a ).

  3. n=5n=5. Φ5(x)=x4+x3+x2+x+1\Phi_5(x)=x^4+x^3+x^2+x+1, so [Q(ζ5):Q]=4[\mathbb{Q}(\zeta_5):\mathbb{Q}]=4 and Gal(Q(ζ5)/Q)(Z/5Z)×C4\mathrm{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})\cong(\mathbb{Z}/5\mathbb{Z})^\times\cong C_4.