Localization of a module

Given S⊂R multiplicative, the module S^{-1}M obtained by inverting S in an R-module M.
Localization of a module

Let RR be a , let SRS\subseteq R be a , and let MM be an RR-module. The localization of MM at SS is an S1RS^{-1}R-module, denoted S1MS^{-1}M, constructed so that every sSs\in S acts invertibly on S1MS^{-1}M.

Here S1RS^{-1}R is the .

Construction (fractions in a module)

Define S1MS^{-1}M as equivalence classes of pairs (m,s)M×S(m,s)\in M\times S under

(m,s)(m,s)tS such that t(smsm)=0 in M. (m,s)\sim (m',s') \quad \Longleftrightarrow \quad \exists\,t\in S \text{ such that } t(s'm-sm')=0 \text{ in }M.

Write the class of (m,s)(m,s) as ms\frac{m}{s}. Addition is

ms+ms=sm+smss, \frac{m}{s}+\frac{m'}{s'}=\frac{s'm+sm'}{ss'},

and the scalar action of S1RS^{-1}R is given by

(rs) ⁣(mt)=rmst. \left(\frac{r}{s}\right)\!\left(\frac{m}{t}\right)=\frac{rm}{st}.

The map ιM:MS1M\iota_M:M\to S^{-1}M given by ιM(m)=m1\iota_M(m)=\frac{m}{1} is RR-linear.

Universal property

Let NN be an S1RS^{-1}R-module. Viewing NN as an RR-module via the canonical map RS1RR\to S^{-1}R, every sSs\in S acts by an automorphism on NN. The localization S1MS^{-1}M is characterized by:

For every RR-linear map f:MNf:M\to N, there exists a unique S1RS^{-1}R-linear map f~:S1MN\widetilde f:S^{-1}M\to N with f~ιM=f\widetilde f\circ\iota_M=f.

In particular, localizing at a prime p\mathfrak p means taking S=RpS=R\setminus\mathfrak p and writing

Mp:=(Rp)1M, M_{\mathfrak p}:=(R\setminus\mathfrak p)^{-1}M,

in parallel with .

Localization interacts well with exact sequences: it is an exact functor on modules (see and compare with the general notion of an ).

Finally, localization can be expressed as a base change: via there is a natural isomorphism

S1M(S1R)RM. S^{-1}M \cong (S^{-1}R)\otimes_R M.

Examples

  1. Localizing a quotient. If IRI\subseteq R is an ideal, then

    S1(R/I)  (S1R)/(S1I), S^{-1}(R/I)\ \cong\ (S^{-1}R)/(S^{-1}I),

    where S1IS^{-1}I denotes the image of II in S1RS^{-1}R.

  2. Torsion killed by localization. Take R=ZR=\mathbb Z, M=Z/nZM=\mathbb Z/n\mathbb Z, and localize at S=Z(p)S=\mathbb Z\setminus (p) (so S1Z=Z(p)S^{-1}\mathbb Z=\mathbb Z_{(p)}).

    • If pnp\nmid n, then nSn\in S becomes a unit, so S1M=0S^{-1}M=0.
    • If pnp\mid n, then S1MZ(p)/nZ(p)S^{-1}M\cong \mathbb Z_{(p)}/n\mathbb Z_{(p)}, which is generally nonzero.
  3. Making an element invertible forces a module to vanish. Let R=k[x]R=k[x], M=R/(x)M=R/(x), and S={1,x,x2,}S=\{1,x,x^2,\dots\}. In S1RS^{-1}R the element xx is a unit, but xx annihilates MM, so S1M=0S^{-1}M=0.